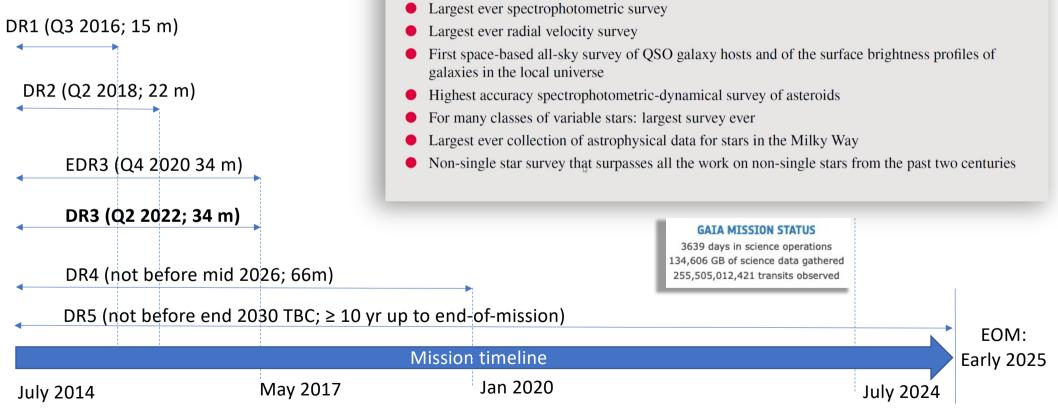


The UK Gaia Data Mining Platform

Nigel Hambly (IfA Edinburgh & Gaia DPAC) National Astronomy Meeting, Hull 2024



DR3: "A release of superlatives ... "

... yet it represents

- only 27% of the likely end-ofmission observation time-line
- ~1% of the likely end-of-mission data release volume

Gaia DR3: a release of superlatives

Beyond the largest and most accurate astrometric and photometric survey to date (Gaia EDR3):

Gaia DPAC

Gaia DR3 bulk data volume

- Bulk download of DR3 products is provisioned via a Content Delivery Network
 - 8.9 TB of gzipped eCSV (text) files; 25 TB uncompressed
 - Single thread download/decompress the lot in roughly a few days
 - Largest single data sets are (eCSV)
 - XP mean spectra: 8 TB (12% of catalogue sources)
 - MCMC posterior PDF samples output from Apsis General Stellar Parameterization from Photometry: 7 TB (0.1% of catalogued sources)
- DRs 4 (& 5) detailed contents being generated now (DR5 still under discussion) but ≈60x (DR4) to 100s (DR5) times bigger than DR3
 - More spectra, epoch-resolved data, raw and/or intermediate data, ...

Relational systems beginning to groan...

- TAP/ADQL provides limited access to bulk data via VO Datalink
 - Relational DBs don't handle array types easily (i.e. time series, spectra, sampled PDFs, ...)
- Even straight tabular data is becoming challenging
 - Mitigate in the short term via e.g. column subset "gaiadr3.gaia_source_lite" in Gaia archive
- No facility for end-user programmability
 - e.g. ADQL has only very basic statistical aggregates
 - ADQL is not a programming language!

gaia archive					
HOME	SEARCH	VISUA	LISATION	HELP	
Basic	Advanced (ADQL)	Query Resu	llts	
gaia			-		
St.	₽ *	¥			
• Othe	er		Share	table	
🕀 Gaia	a Data Releas	se 1			
🕀 Gaia	a Data Releas	se 2			
🗏 Gaia	a Data Releas	se 3			
E (🔋 gaiadr3.ga	ia_source	•		
Đ	🔋 gaiadr3.ga	ia_source	e_lite		
⊕A	strophysical	l parame	ters	~	
⊕A	uxiliary				
⊕ C	ross match				
€E	xtra-galactic				
⊕N	lon-single st	ars			
⊕ P	erformance	verificati	on		
⊕ R	eference fra	me			
⊕ S	cience alerts	5			
⊕ S	imulation				
⊕ S	olar system				
⊕ S	pectroscopy	/			
θV	ariability				

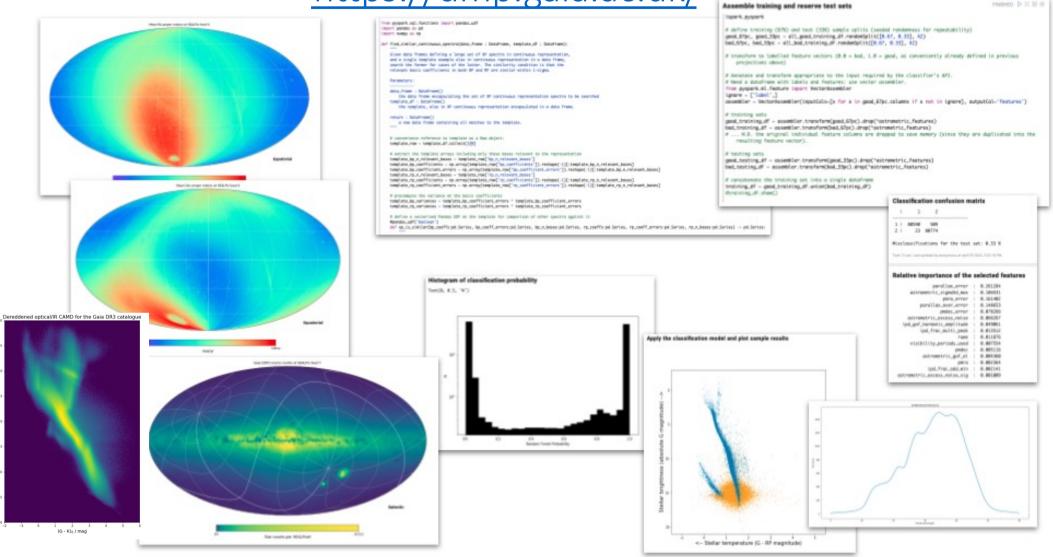
Advanced, scale-out usage scenarios

Community requirements gathered by DPAC via GREAT network and documented in Brown+ (2012)

- Higher order, robust statistical aggregates (e.g. GDAS-OA-03)
- Analysis of per-CCD photometry for short timescale variability (e.g. GDAS-ST-19)
- Searches in Fourier-analysed time domain data (e.g. GDAS-ST-12)
- Wholesale dataset trawls (e.g. GDAS-ST-11)
 - e.g. Spectral twins
- Pattern queries (e.g. GDAS-ST-08)
 - increasingly requiring Machine Learning techniques
- General CPU-intensive analysis (e.g. GDAS-OA-01)
- Efficient searching for pairs (or higher multiples) of associated objects, e.g.
 - Lensed QSOs
 - Wide binaries
- Searches in time-resolved astrometric data, e.g. detect plane gravitational wave(s) or primordial stochastic GW background
 - Requires local plane coordinate residuals from epoch astrometry

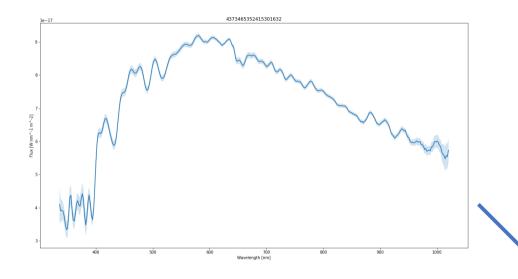
Introducing the UK Gaia Data Mining Platform

- The (obvious) solution: code-to-data platforms
 - Bring end-user code to lots of CPU co-located with the data
 - Employ distributed computing to mitigate increases in data volume and scale of processing
 - cf. Rubin Science Platform for LSST, STScI/MAST TIKE, ESA Datalabs, ...
- The UK Gaia DMP
 - Deployed on the STFC IRIS Cloud
 - Flexibility and scalability
 - Employs Apache Spark ecosystem
 - Python notebook interface
 - Friendly APIs to access distributed processing
 - Familiar libraries for vectorized operations
 - Machine Learning and many other libraries


https://dmp.gaia.ac.uk/

Content of the second s		Q Search	NHambly -
Welcome to the Gaia Data Powered by Apache Spark & Zeppelin The UK Gaia Data Mining Platform is a science platform for larg It provides a notebook-based environment and distributed com Particularly suited to scale-out workflows requiring some level of Motebook Motebook Minort note Create new new new	e-scale exploitation of the publicly released Gaia data products. pute facilities via Apache Zeppelin & Spark.	gai	

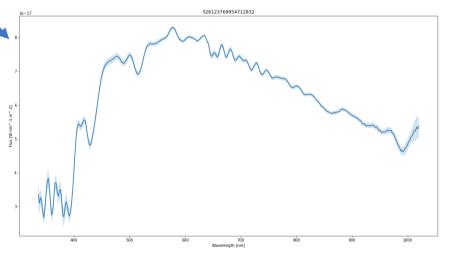
https://dmp.gaia.ac.uk/


mamore D 11 01 00

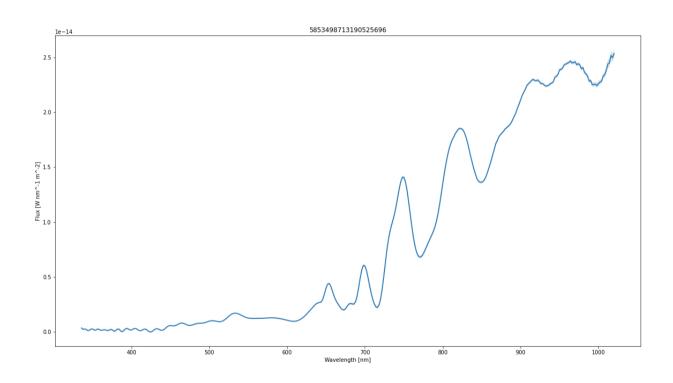
A detailed example: searching 2x10⁸ spectra

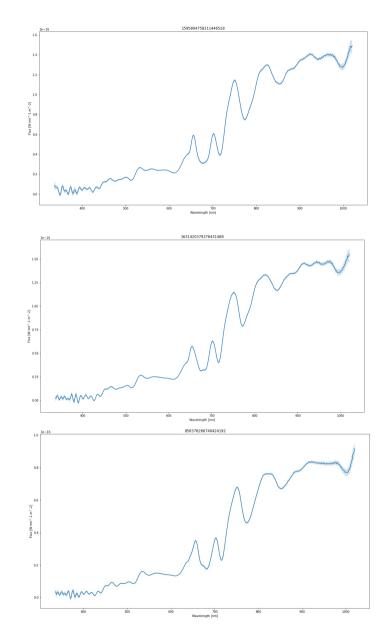
- DR3 has 220 million blue + red spectra in basis-set representation
 - N basis coefficients
 - N coefficient uncertainties
 - N(N-1)/2 correlation coefficients
 - where N = 55 in each passband
- 2.7TB in compact (Parquet) binary format
- Simple use case: given one example template, find similar spectra ...

... for example, a Solar (G-) type star



Example matches at similar S/N in a couple of hours


- Modest level of parallelism in (virtual) Spark cluster
- I/O bound (CPU wait time typically 50%)


 $D_M = \sqrt{(c_1 - c_2)^{\mathsf{T}} (\Sigma_1 + \Sigma_2)^{-1} (c_1 - c_2)}$

- Statistical rigour: compute the *Mahalanobis distance* (e.g. De Angeli et al. 2022) between the template and all others
 - In each case reconstruct the full 2d covariance matrix from the (flattened, 1d) correlation matrix and uncertainties vector
 - matrix & vector multiplications implemented as a "Pandas" (vectorized) User Defined Function for execution on Spark cluster worker nodes

Another example: Proxima Cen look-alikes

Further information

- If you ...
 - ... find your Gaia science hobbled by the existing archive access, and / or
 - ... are interested in Data Mining / Machine Learning in Gaia astronomy, and / or
 - ... wish to learn more about industry-standard "big data" technology

then please get in touch (speak to me today at NAM 2024 and see live demos!)

Email: gaiadmp-support@roe.ac.uk

for an account and further information.