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Introduction

The ontology work in DS5 covers a wide spectrum of ontologies, associated technologies 
and their applications. Among these, an in-depth exploration of formal defined ontologies is 
performed.

These defined  ontologies,  while  being more  restrictive and difficult  to  build  since they 
require  formal  definitions  of  the  concepts,  allow the  use of  automated inference tools 
ranging  from  consistency  checkers  to  advanced  semantic  reasoning  engines.  This  is 
especially interesting when considering databases since a semantic layer with such tools 
would allow automated consistency checks of the entries or advanced querying.

To experiment on these possibilities and the feasibility of a defined ontology-based system, 
a test case was chosen: an ontology of astronomical object types. Indeed the field is well-
known,  of  manageable  size,  and  related  potential  use-cases  existed.  Furthermore, 
standardizations of  astronomical  object  types existed and could be used as a starting 
point. The SIMBAD1 database list of object types2 was a good candidate since it was of 
good  size  and  the  goal  was  to  create  and  test  an  knowledge  engine  to  couple  with 
databases.

Summary of the activities

The following technologies have been explored:
– Formal ontologies representation using the Web Ontology Language (OWL) in its 

versions OWL-DL, OWL 1.1 and OWL2-RL
– Description Logics, from ALCN to SHOIQ(D) and the performance of their  OWL 

implementation in automated reasoner Pellet, RACER and FaCT++
– Jena RDF framework and Protégé-OWL API to implement prototype applications.
– Protégé ontology editor.
– Graph generation with Graphviz and the DOT language.

In terms of publications the work on this ontology has lead to two IVOA Technical Notes: 
– Ontology of Astronomical Object Types3 which provides in-depth information on the 

ontology itself, updated with each major revision of the ontology.
– Ontology of Astronomical Object Types Use Cases4 which covers some use cases 

for the ontology, including prototype implementation.

Additional information can also be found on the VOTECH wiki at:
http://wiki.eurovotech.org/twiki/bin/view/VOTech/OntologyOfObjectTypes

1 http://simbad.u-strasbg.fr/  
2 http://simbad.u-strasbg.fr/guide/chF.htx  
3 http://www.ivoa.net/Documents/latest/AstrObjectOntology.html  
4 http://www.ivoa.net/Documents/latest/AstrObjectOntologyUseCases.html  
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Also, aside from DSRPs and IVOA interops, the work on the ontology of object types was 
the subject of presentations during the following workshops :

– Practical Semantic Astronomy Workshop 2008 in Caltech, Pasadena5

– Practical Semantic Astronomy Workshop 2009 in Glasgow6

An Ontology of Astronomical Object Types

Ontology Construction

Building  a  defined  ontology  requires  formalizing  conditions  and  definitions  on  the 
ontology's  concepts.  Description  Logics7 is  an  adequate  and  mature  means  of 
representing  such  ontologies  and  the  Web  Ontology  Language  (OWL)8 is  based  on 
description  logics  and  is  probably  the  most  widespread  language  for  implementing 
ontologies.  As for  the OWL flavor  to  use,  OWL-DL and its  evolution  OWL1.19 were a 
natural  choice  since  only  them  allowed  enough  expressiveness  to  build  exploitable 
definitions  while  still  being  decidable.  Moreover,  both  are  well-supported  by  existing 
automated reasoners. The ontology is also compliant with the latest OWL2-RL10 flavor.

The ontology's construction was done by hand, using the Protégé-OWL11 editor, and relied 
on formalizing in description logics the knowledge on object types from both documentary 
sources  and  experts  of  this  field.  However,  for  both  performance  and  maintenance 
reasons, the goal is to include all the knowledge to be used by applications but no more.

The guidelines for ontology construction were:
– Only add conditions on concepts that are always true. This is necessary to ensure 

correct inferences from the reasoner.
– As  a  consequence,  conditions  expressing  possibilities  have  to  be  expressed 

backwards (e.g.  It  cannot  be guaranteed that  a  given stellar  object  has  an proper 
motion in the databases though it can have one, but it can be guaranteed that a proper 
motion is always associated with stellar or sub-stellar objects)

– The  main  hierarchy  being  based  on  subsumption  (a  more  general/more  specific 
relationship), relationships between compound objects and their components are to be 
represented with properties hasComponent/hasPortion created towards this end.

– Reasoning  complexity  has  to  be  kept  low.  This  has  lead  to  avoid  using  qualified 
cardinality restrictions when possible, and avoid putting restrictions on enumerations or 
intervals. Testing on intervals or even enumerations can be externalized though, so it is 
possible  to  keep  the  complexity  lower  in  the  ontology  without  sacrificing  such 
restrictions.

– The consistency of the structure and the performance level of the reasoning is to be 
checked as often as needed using the reasoner 

– To help linking real-world objects such as entries in object databases to the abstract 
concepts of the ontology, real-world data from databases such as measurements and 
labels is added or linked to the concepts using annotation properties.

The resulting ontology covers the whole field of object types, most of them being at least 
partly  defined.  Also,  externalizing  the  restrictions  on  intervals  and  optimizing  some 
restrictions  enabled  keeping  the  reasoning  times  quite  low  though  the  complexity  of 
ALCIN(D), the description logic used to describe the ontology, is exponential12. 

5 http://www.cacr.caltech.edu/semast/  
6 http://www.dcs.gla.ac.uk/workshops/semast09/  
7 http://wiki.eurovotech.org/twiki/bin/view/VOTech/DescriptionLogics  
8 http://www.w3.org/TR/owl-guide/  
9 http://owl1_1.cs.manchester.ac.uk/  
10 http://www.w3.org/TR/owl2-profiles/#OWL_2_RL  
11 http://protege.stanford.edu/overview/protege-owl.html  
12 http://www.cs.man.ac.uk/~ezolin/dl/  
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Implementation

Alongside with the ontology building, means of developing applications were set-up. This 
required mainly a reasoner and an API able to handle OWL-based ontologies manipulation 
and reasoner calls.

Reasoner

Choosing  a reasoner  required  a  thorough study13.  It  temporarily  lead to  the choice  of 
RACER14. But eventually Pellet15 turned out to be better since it reached higher levels of 
performance while having a much better support for non-commercial applications.

An API for OWL manipulation

The choice of an OWL API is basically a problem of compromise. On the one hand, until 
recently most developments were made using the  Jena16 RDF/RDFS Framework, but a 
great  shortcoming is that  it  lacks specific  primitives for  OWL-based applications.  OWL 
being an evolution of RDFS, it is possible to manipulate it with Jena, but at the cost of 
heavy additional development. 
On the other hand, most OWL API are young and still  in alpha stages. Eventually the 
Protégé-OWL API17 was  judged the  best  compromise  since  it  provides  all  the  wished 
functionalities and is well supported, being derived from Jena and used as basis for the 
Protégé-OWL editor which is itself upgraded on a regular basis.

Also, OWL elements are usually manipulated via their URI but for convenience dictated 
that they could be manipulated by their names (i.e. their URI without any namespace). 
Hence the implementation includes a class named OntoManager which deals with name-
based manipulation.  A positive side-effect  is  that  since this  class  basically  acts  as  an 
interface between the main part of the program and the calls to OWL API functions, porting 
the  program to  another  API  mostly  means  porting  this  single  class  instead  of  all  the 
program.

Use-cases Implementation Choices

Both the Protégé-OWL API being written in Java, and the wish to be able to have the test 
applications running as web services lead to use Apache Tomcat as the web server and 
develop everything in Java / Servlet18 / JSP19, beginning with an extension of the API. This 
extension is designed for handling defined ontologies in conjunction with a reasoner and is 
not specific to the ontology of object types.

Additionally, a bridge to the Graphviz20 representation software was implemented to allow 
graph representations of data and especially parts of the ontology subsumption structure. 
It includes methods that automatically build from basic data a script in DOT language to be 

13 http://wiki.eurovotech.org/twiki/bin/view/VOTech/InferenceEngineTests  
14 http://www.racer-systems.com/  
15 http://pellet.owldl.com/  
16 http://jena.sourceforge.net/  
17 http://protege.stanford.edu/plugins/owl/api/  
18 http://java.sun.com/products/servlet/  
19 http://java.sun.com/products/jsp/  
20 http://www.graphviz.org/  
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interpreted by Graphviz as well as methods to retrieve the image data within the Java 
program calling the bridge so that no knowledge of Graphviz itself is required to use it.

Application prototypes

In-depth information on the different use-cases and their prototype implementation can be 
found in the corresponding IVOA technical note :

http://www.ivoa.net/Documents/latest/AstrObjectOntologyUseCases.html

Registry Request Builder

The first application exploiting the ontology of astronomical object types was a request 
builder  for  querying  astronomical  registries.  The  idea  of  such  a  tool  came  from  the 
limitations of existing registry querying methods. Indeed, when putting conditions on object 
types within  a registry  query, one must  use existing keywords of  the registry. But  the 
following problems arise when considering astronomical object types: 
– Some object types do not have a keyword associated.
– More specific keywords are not taken into account in a broader query.
– All the keywords have to be selected manually by the user if he wants the best query 

possible.

The ontology's main relationship – the  subsumption – is the one needed to retrieve more 
specific or more general keywords. Starting with the concept queried on, going down the 
subsumption  leads  to  more  specific  concepts  and going  up the  subsumption  leads  to 
broader concepts. Hence, if the concepts are tagged with registry keywords, harvesting 
more specific  or more general keywords. At the time only the VizieR registry keywords 
were added as annotations to the concepts. Indeed, though the builder is not dependent 
on any specific  registry it requires object types keywords to achieve some results, and 
VizieR was richer than most registries with regard to such keywords.

Starting from the concept queried on, the search for keywords is done in two times: 
– first find any keywords associated to the queried concept and any associated to more 

specific concepts
– Then, if no keyword has been found at this point another search is performed, this time 

to get the most specific subsumer having an associated keyword in order to be able to 
propose a query as close as possible to the original concept, albeit broader. 

Registry Resource Finder

The idea with  this  application was to Capitalize on the first  attempts to  provide better 
registry queries with the Registry Request Builder by extending it to other registries than 
VizieR and  allowing the user to type a free text as the input instead of having to choose 
the concept corresponding to the object type he wishes to query a registry on.

The main problem to solve was to interpret the input in order to know which object type the 
user wished to query on. To do this the resource finder relies of the following :

– The concepts of the ontology are tagged with keywords from various services.
– On  top  of  those  keywords,  the  concepts  of  the  ontology  are  tagged  with  an 

annotation named MISCgeneralKeywords which is a collection of words in natural 

http://www.ivoa.net/Documents/latest/AstrObjectOntologyUseCases.html


language describing part or all of the object type represented by the concept.
– If the input is actually identical to an existing keyword annotating a concept then 

the annotated concept is the one to base the query on.
– Else,  break the input  into  words and try  and match them to the content  of  the 

MISCgeneralKeywords annotation. The closest match indicates the best concept to 
base the query on.

So mostly it is a preprocessing before the Registry Request Builder. Indeed the input from 
the user is matched to annotations in the ontology. The best match  indicates the concept 
representing the object  type to  query  on.  Then get  the keywords to  use to  query the 
registry as it is done in the registry request builder and build the query. 

As  far  as  querying  registries  go,  the  application  is  able  to  query  either  VizieR or  the 
Astrogrid registry. In fact, the application could even query other services as long as the 
keywords for that service are present in the ontology. To show that possiblity the prototype 
application was made able to query the SAO/NASA Astrophysics Data System 21

Figure 1: Screenshot of an example based on a query for the string “double star”.

Ontology Explorer

Another  application  using  this  ontology  is  a  prototype of  ontology  explorer  which  was 
designed both to allow browsing the contents of the object types ontology (or any other 
one) and to test the performance of reasoning engines when it  came to identifying an 
unknown concept from conditions put on it.

The interface give the details of the current concept. Conditions can be put on the concept 
using drop-down boxes which only allow building conditions from material the ontology and 
reasoner can relate to. Each a concept is altered, be it an existing concept or a new one 
just added, the reasoner checks if the concept is still consistent. 

Asserted knowledge on the current concept and knowledge inferred by the reasoner are 
shown separately. Additionally, a dynamic graph showing the neighborhood of the concept 
(the direct ancestors and children) is shown to help visualize the hierarchy within concepts. 
The graph also shows which concepts are defined and which are not by using different 
colors and the current concept can be changed by clicking on the graph, which allows an 
easier  navigation  for  users  willing  to  browse  the  ontology  without  furthers  needs  like 
testing the performance of a reasoner.

21 http://adsabs.harvard.edu/index.html  
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Figure 2: Screenshot of the concept explorer used to browse the ontology and showing 
the details and neighborhood of the concept CataclysmicVariable. 

Extensive tests have lead to the conclusion that getting good inference results was highly 
dependent on the definitions of the concepts and the input data, which has led to building 
more adequate definitions for astronomical object types.



SIMBAD Consistency Checker

Cross-identification's Consistency Checker

A consistency checker for entries of the SIMBAD database was also developed. Indeed, 
there are currently about  4.5 million objects in SIMBAD, each of which is tagged with 
otypes which are the SIMBAD object types keywords. But most of the time, only the main 
otype has been set by an expert, the other otypes are inherited: a SIMBAD object inherits 
the  dominant  otype of  each catalog where  it  is  referenced.  Consequently  if  a  catalog 
covers  a  field  where  very  different  object  types  are  considered,  this  can  lead  to 
inconsistencies.

The reasoner is able to check the consistency of any new element with regard to the 
ontology. Therefore if  a concept  with the same characteristics as the SIMBAD item to 
check is created, its consistency can be checked with regard to the ontology, which is 
consistent itself. 

To create such a new concept  conveniently, the concepts  of  the  ontology have being 
annotated with their corresponding otypes. This way, the otypes from the SIMBAD entry 
provide a list of concepts that the new concept to check is to inherit from. After the check, if 
the concept is inconsistent, then the program indicates the inconsistent otypes.

Components And Measurements Checker 

Once the cross-identification  has been completed,  additional  consistency  checks have 
been  implemented  both  to  detect  more  potential  inconsistencies  but  also  give  more 
explanations about found inconsistencies. This work has taken two directions.

The first part of this extension has been checking if inconsistent otypes are not the result 
of the merging of compound objects and their components (e.g. A double star and its main 
component). If the inconsistent otypes refer to concepts one of which can be a component 
of the other, then it is likely that there is no real inconsistency but rather a merging of the 
two.

The second is checking if measurements from the SIMBAD entry are consistent with the 
object type of the entry itself.  Currently, the measurements taken into account are the 
redshift and radial velocities. If such measurements are found for a given entry then they 
are  checked  with  regard  with  the  ontology.  To be  consistent  with  the  ontology,  it  is 
impossible to have a radial velocity for extra-galactic objects or having a redshift for a star.



Figure 3: Screenshot  of  the  SIMBAD Consistency  checker  on  two items detected  as 
inconsistent, the first for having a redshift value while its otypes state it should not have not 
and the second for being tagged both as a stellar object and a galaxy.

NED Consistency checker

Following the work on a consistency checker for the SIMBAD database, a version of that 
consistency checker was adapted to the NASA/IPAC Extragalactic Database (NED)22.

It  shows  very  little  differences  with  the  SIMBAD  version.  In  fact,  the  most  important 
differences are that, unlike the SIMBAD consistency checker :

– The application queries the NED database.
– Only one object can be checked at a time.
– Less measurements from the database are used for consistency checking, mostly 

because different measurements are present in the NED and SIMBAD databases.

Annotation hierarchy viewer

The annotation hierarchy viewer is meant to show hierarchies of keywords with regard to 
the ontology. 

Items of the ontology -usually concepts- can be annotated, annotations having no part in 
reasoning. Therefore annotations are a good way of providing additional information on 
concepts. In particular, it is a convenient way of indicating which keywords in astronomy 
vocabularies or data sources correspond to a given concept.

It may be interesting to know how these keywords are organized within the ontology. Since 
they are present as annotations,  they follow the same hierarchy as the concepts they 
annotate which the viewer shows as a graph. 

22 http://nedwww.ipac.caltech.edu/  
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Figure 4: Screenshot of an example of hierarchy for the VizieR keywords, with only the 
concepts annotated with such keywords being represented on the graph.



Keyword mapper

Following the direction of the annotation viewer, a keyword mapper has been developed. 
Its goals are first to map keywords with regard to the ontology and second to output these 
mapping in various formats so that they can be either used or compared.

This last option is especially interesting since some keyword mappings already exist so 
comparing them with the results obtained with the ontology-based mapping may lead to 
enhancements in ontology annotations or the mapping actually used by other applications.

The main specifications of this prototype applications are:
– Mappings can be outputted on screen as well as text files.
– It can map any two sets of keywords that exist as annotations within the ontology
– The mapping strategy can be parametrized to exploit any of the ontology elements

Figure 5: Screenshot of an example of mappings using a version focused on mapping 
Astronomical Data Center (ADC) and VizieR registry keywords.


	Introduction
	Summary of the activities
	An Ontology of Astronomical Object Types
	Ontology Construction
	Implementation
			Reasoner
			An API for OWL manipulation
			Use-cases Implementation Choices


	Application prototypes
	Registry Request Builder
	Registry Resource Finder
	Ontology Explorer
	SIMBAD Consistency Checker
	Cross-identification's Consistency Checker
	Components And Measurements Checker 

	NED Consistency checker
	Annotation hierarchy viewer
	Keyword mapper


