Benchmarking Catalogue
Cross Matching

Robert Power
Drew Devereux

July 2004

Version 1.0
26 July 2004

)

CSIRO

© Copyright 2004 CSIRO ICT Centre

R 1 (o Yo {1 [o1 110 o TR 3

Nt O U o0 1 3
S o0 o1 TR PRRRPPPPRPIN 3
1.3 REFEIENCES ..o 3
L4 OVEBIVIEW. i 3
2 DaAta Preparation ... 4
2.1 SOUICE CAtAlOQUESoeeeieieiiieiiiiiiiieeeeteeeeeeeeeee et eeee e enenenneennnnnnes 4
2 1= PPN 4
2.3 MABX EITOIS ..ttt e et e e et e e e e e e aees 6
22 [I =] o P PRRPRPRRRRNS 6
A ST = {=T= To [10T N =) P 6
3 Catalogue CroSS MaAtCh.........ccouiuiiiiii i 8
0 O 541 P RPRPRRRN 9
I U 1Y 1 PPN 9
3.3 TYCNOZ.. . e —— 9
B4 2IMASS .ttt ———————————tt—ttt—tttttttttntnntntnnnnnnnnnnnnnnnnen 10
T U 1] N @ 1 PRSPPI 10
G U 1] N 2 1 PR 10
4 Nearest Neighbour MatChing...........ccooviiiiiii e, 10
Nt 5 /1R 11
T 11 R 12
e T 1Y/ o o 12
Y 3 SRR 12
T U 1] 1N R 13
T 151 1N 2= R 13
LS @ o 11553 o O URPTR 13
Appendix A System ConfigUIationcoooeeeieeee e 16
Appendix B Dec Plane Sweep Algorithmccooooeiiiiiiiiiii e, 17
Appendix C Cross Match AlgOorithmeeiiii e 19
Appendix D Nearest Neighbour AlQOrithm.euveiiiiimiiiiiiiiiiiieeeeeeens 21
Appendix E Notes on C++ implementationccovvveviiiiiii e e 22

© Copyright 2004 CSIRO ICT Centre

Catalogue Cross Matching 26/Jul/2004

1 Introduction

1.1 Purpose

The purpose of this report is to compare results achieved in using the plane sweep
technique for processing astronomy catalogues. We have focused on catalogue
cross matching and determining nearest neighbours and have explored various
algorithm alternatives.

1.2 Scope

This document records the steps performed to prepare catalogue data and process it
for the matching algorithms. The issues encountered and solutions derived in this
process are documented. While the full details of the catalogue matching algorithm
are detailed elsewhere ([2] and [4]), the appendices include descriptions of some
aspects of the implementation we feel worthy of highlighting.

1.3 References

[1] Devereux, D., “Notes on the Implementation of Catalogue Cross Matching”
CSIRO ICT Centre Technical Report TR-04/1847.

[2] Abel, D., Devereux, D., Power, R., Lamb, P. “An O(NlogM) Algorithm for
Catalogue Matching” CSIRO ICT Centre Technical Report TR-04/1846.

[3] Devereux, D., Power, R. “Plane Sweep Matching Users’ Guide” (in
preparation/URL?)

[4] Abel, D., Devereux, D., Power, R., Lamb, P. “An O(NlogM) Algorithm for
Neighbours Evaluation in Astronomical Archives” CSIRO ICT Centre Technical
Report (in preparation).

[5] URL for source distribution.

[6] XMM Newton: http://xmm.vilspa.esa.es

[7] SUMSS: http://www.astrop.physics.usyd.edu.au/sumsscat

[8] Tycho-2 Catalogue: http://www.astro.ku.dk/~erik/Tycho-2

[9] 2MASS: http://www.ipac.caltech.edu/2mass and
http://pegasus.phast.umass.edu.

[10] USNO Astrographic Catalogues:
http://ftp.nofs.navy.mil/projects/pmm/catalogs.html

1.4 Overview

This document is organised as follows. Section 2 outlines the catalogues used and
how they were prepared for plane sweep matching. Section 3 overviews the
catalogue cross matching, the variations of its implementation and summaries the
benchmarking performance. Section 4 does the same for nearest neighbour
evaluation. We finish with some conclusions in Section 5 and mention possible
further work to be done in this area. The appendices provide further details on
various aspects of the implementation and benchmarking environment for those
interested.

© Copyright 2004 CSIRO ICT Centre Page 3 of 22

Catalogue Cross Matching 26/Jul/2004

2 Data Preparation

The plane sweep matching algorithm requires the input catalogues to be sorted by
declination and only needs the spatial description of an object (it's location in right
ascension and declination) with associated errors. The maximum errors also needed
for the catalogue cross matching, although no error information is needed for
determining neighbours. This section reviews the catalogues used and how they
were prepared for the purposes of the benchmarking tests.

2.1 Source Catalogues
The following is a brief summary of the catalogues used.

Catalogue # records Size on | #files Content Records Null
disk

1XMM 56,711 215M 2 | ASClI Variable | INDEF
SUMSS 134,870 18M 1 | ASCII Fixed
Tycho2 2,539,913 504M 1 | ASCII Fixed
2MASS 470,992,970 144G 92 | ASCII Variable | \N
USNO A2 526,280,881 6G 24 | Binary Fixed 0
USNO B1 1,045,175,762 78G 1800 | Binary Fixed 0

Figure 1. Sample catalogue descriptions

Some catalogues use a fixed record structure where the data for each field is located
at specific columns within the record (noted as “Fixed” in the table above). Others
use a delimiter character to separate fields and thus have a variable record length
(“Variable” above). For example, XMML1 uses a space character to delimit fields and
places string data into quotes (so they may contain spaces), while 2MASS uses a ‘|’
as the delimiter character. A field that contains no value (a NULL) may be depicted
with a special string or number, as indicated in the last column of the table above, or
simply be missing (as is the case with Tycho?2).

2.2 Files

The catalogue files are processed by C++ programs that read the file contents and
write only the necessary data for catalogue cross matching to a file. The format of the
output point files is:

id RA RA err Dec Dec_err
The id field is a unique identifier for the record. This is stored as an 8 byte integer
(long long in C++) to accommodate large catalogues. For example, the USNO
catalogues are provided as a collection of files split into regions partitioned by
declination. Two identifiers (record number within the file and region number) can be
used to uniquely identify each record in the catalogue. These two numbers are
combined into a single unique id.

All output coordinate data is in decimal degrees, both coordinates and their errors.

It is assumed the input catalogues are organised as a sequence of records, each
describing an object. Each record is read in turn and only the above information
retained. This data is placed into a contiguous array where each element of the array
contains the required point information. A consequence is that the total number of
records must be known before hand. Once all the data has been read, it is sorted by

© Copyright 2004 CSIRO ICT Centre Page 4 of 22

Catalogue Cross Matching 26/Jul/2004

declination, using the C standard library’s gsort function. Then the data is written to
a file for later cross match processing. The data may be written as either ASCII text
(using C printf) orasbinary (usingCfwite).

Note sorting is done entirely in memory. This is possible since the catalogues chosen
are partitioned into regions of disjoint declination strips. The USNO A2 and B1
datasets are provided as 24 and 1800 files respectively, partitioned by equal zones of
dec. That is, strips of 7.5 and 0.1 deg wide. This makes the files manageable as far
as reading into memory and sorting. After sorting, the files remain separated,
although they could have been combined into a single large file. The plane sweep
matching code has C++ classes that present a collection of “split files” as a logical
single file.

Note also that the 2MASS data is similarly partitioned by declination zones, but the
files themselves are not disjoint by declination. Whereas the USNO catalogues are
strictly partitioned by declination, producing files of differing numbers of records each,
the 2MASS files are partitioned so there are a uniform number of records in each (all
except the last file). Consequently, the files overlap in declination. This is “fixed”
when reading the files by the plane sweep code by always having two files open and
returning the next lowest object (by declination).

We may not be so lucky with other catalogues, and other avenues of efficient sorting
pursued, for example sort/merge algorithms. There is obviously the potential for
parallel processing to be used here.

The three distinct phases of reading, sorting and writing the data are all performed by
a single program. A break down of these times for binary and ASCII files are given in
the tables below. The times presented are rounded to the nearest unit (m for minutes
and s for seconds) and are the same for each row.

Catalogue | Disk Total Read Sort Write
elap | cpu | elap | cpu | elap | cpu | elap | Cpu

1XMM 2M | 2.0s| 1.4s 1.0 1.2 1.0 0.2 0.0 0.0
SUMSS 5M| 2.0s| 1.3s 1.0 0.8 1.0 0.5 0.0 0.0
Tycho2 93M 34s| 33s 23 22 10 9 1 1
2MASS 18G | 106m | 95m 70 59 33 32 4 4
USNO A2 20G | 45m | 43m 8 6 32 32 6 6
USNO B1 39G | 95m | 80m 26 11 57 57 12 12

Figure 2. Decoding catalogues, sorting by declination and saving as binary files

Catalogue | Disk Total Read Sort Write
elap | cpu | elap | cpu | elap | cpu | elap | cpu

1XMM 4AM | 3.0s| 2.3s 2.0 1.7 1.0 0.2 0.5 0.5
SUMSS 8M| 3.0s| 25s 1.0 0.8 0.0 0.6 2.0 1.2
Tycho2 152M 55s 53s 23 21 9 9 23 22
2MASS 32G | 172m | 166m 65 59 32 32 75 75
USNO A2 33G | 121m | 120m 5 5 32 32 83 82
USNO B1 63G | 244m | 232m 22 11 58 57 164 | 164

Figure 3: Decoding catalogues, sorting by declination and saving as ASCII files

The only difference in the above two sets of results is how the files are written to disk,

which can be seen by the differences in the write times recorded above.

© Copyright 2004 CSIRO ICT Centre

Page 5 of 22

Catalogue Cross Matching

When creating a file, the maximum right ascension and declination errors are
calculated. This number is required as input to the catalogue cross matching

algorithm described in [1].

2.3 Max Errors

The following table lists the max RA and Dec errors for each of the catalogues in

degrees.

Catalogue

Max RA error

Max Dec error

IXMM

0.0156153191

0.0156153191

SUMSS

0.0055833333

0.0061666667

Tycho2

0.0000508333

0.0000511111

2MASS

0.0003361111

0.0003361111

USNO A2

0.0000555556

0.0000555556

USNO B1

0.0002775000

0.0002775000

26/Jul/2004

Figure 4. Maximum Standard Deviations.

The following is a summary of the fields containing this information in the tested
catalogues.

1XMM has a single field RADEC_ERR being the statistical 1 o error on the source
position in arcseconds. This is used for both the RA and Dec error.

SUMMS, Tycho2 and USNO B1.0 all have separate error fields for the RA and Dec.

2MASS has three fields recording the semi-major and semi-minor axis lengths of the
one sigma position uncertainty ellipse and the position angle on the sky of the semi-
major axis of the error ellipse. We approximate this as a circle, using the semi-major
access length as the radius.

There are no errors supplied with the data for USNO A2.0. The value of 0.2 arc
seconds was used for testing purposes and needs to be revised in consultation with
someone who knows the data better.

2.4 1d field

The output of the catalogue cross matching is a sequence of id pairs, being the
unique identifier for the matched objects. The catalogues rarely give a single id as a
unique reference for the objects. While this is the case for 1XMM, Tycho2 has three
ids combining to form a unique id, 2MASS uses a string encoding the objects position
into a unique reference: the others have no identifiers at all.

In order to locate the full object description, the sequence of the object’s description
in the original source catalogue is used. When the catalogue is provided as a
collection of files, a file number is also included. As explained previously, for USNO
A2.0, the files are partitioned into zones, and so two ids can be used to locate any
object description.

2.5 Reading Test

The Plane Sweep Matching library includes classes to read catalogue files having the
previously described file structure:

id RA RA err Dec Dec_err

© Copyright 2004 CSIRO ICT Centre Page 6 of 22

Catalogue Cross Matching 26/Jul/2004

To test these files can be read correctly, and to determine a baseline for reading a
catalogue from start to finish, the test program r ead_fi | e can be used. This
program simply reads each record one at a time calculating the maximum standard
deviation encountered, and checks that the declination of each record is not less than
the one before it. The results of running this program on the collection of processed
catalogues is:

Catalogue | Num records | Max SD error | CPU time | Elapsed time
1XMM 56711 0.0156153 0.04s 0.0s
SUMSS 134870 0.00616667 0.1s 0.0s
Tycho2 2430468 | 0.0000511111 1.55s 2.0s
2MASS 470992970 | 0.000336111 4.9m 5.0m
USNO A2 526280881 | 0.0000555556 5.3m 5.5m
USNO B1 | 1045175762 0.0002775 10.3m 10.7m
Figure 5: Reading binary files.
Catalogue | Num records | Max SD error | CPU time | Elapsed time
1IXMM 56711 0.0156153 0.32s 1.0s
SUMSS 134870 0.00616667 0.83s 1.0s
Tycho2 2430468 | 0.0000511111 14.17s 14s
2MASS 470992970 | 0.000336111 50.4m 50.7m
USNO A2 526280881 | 0.0000555556 53.1m 53.4m
USNO B1 | 1045175762 0.0002775 108.5m 109.0m

Figure 6: Reading ASCII files.

These figures concur with the results previously reported for these catalogues,
except for the Tycho2 catalogue. This has some missing values for the mean spatial
location of objects and so these records are ignored. The ASCII files take longer to
read since they are larger on disk (refer to Figure 2 and Figure 3) and for the string
manipulation of their contents. Note the use of ASCII files is a convenience for
debugging purposes, it is easier to produce sample data for testing purposes, and
wont be considered further in this report.

Note the preparation of a catalogue by reading, sorting, then writing out the relevant
information as a separate step prior to performing the plane sweep matching has
only been done as a convenience. Since this step needs to be performed before the
matching proper, it was easier and quicker for the purposes of benchmarking to do
this once at the start. Then the sorted, trimmed catalogues could be used as input for
successive tests of the matching procedure using different algorithm parameters. For
an end to end analysis of matching, the catalogues could be read into memory,
sorted then passed directly to the matching procedure and so avoiding the extra
write/read steps we have incurred.

© Copyright 2004 CSIRO ICT Centre Page 7 of 22

Catalogue Cross Matching 26/Jul/2004

3 Catalogue Cross Match

The C++ implementation of plane sweep matching is outlined in [3] and is
summarised in Appendix B. Catalogue cross matching is described in detail in [1] and
[2] and a fragment of the implementation is presented in Appendix C. The program
used to benchmark the catalogue cross matching can be found in the source
distribution [5] (the program cm fi | e. cpp). This program has a number of options
that control algorithm parameters:

» z_al pha value: the value that puts a probability of alpha into the tail of a
standard normal distribution, thereby putting a probability of (1-2*alpha) into the
interval from -z_alpha to z_alpha. We have used a z_al pha value of 1.96 which
puts a probability of 95% into the central interval. In our problem, this
corresponds to a 95% confidence that two objects are not spatially coincident.

» Indexed active list or “simple” list. The indexed active list is indexed on RA to
allow fast access in terms of RA. The simple list is a queue maintained by Dec
and must be searched in full. The simple active list is only used for debugging
purposes, to verify the indexed active list is reporting the same results. We have
only used the indexed active list in our benchmarking.

* The refine chain to use. Initial tests were done with a spherical bounding box
intersection test. Turns out this identifies few “false drops”. The angular
separation refine accepts the candidate pairs whose angular separations are
such that the likelihood that the two records represent the same source is greater
than some given threshold (defined by the z_al pha value). Since the refine
steps can be chained, the options here are to use the computationally cheaper
bounding box then the angular separation; or alternatively, just use the angular
separation. Our testing has shown that it is best to only use the angular
separation refine.

* The filter method to use. The generic dec plane sweep algorithm (Appendix B)
can be used, or the more specialised cross match one (Appendix C). Again, the
use of alternate implementations have been used as a cross check to verify the
code is working correctly as well as being an algorithmic alternative with differing
computational performance. Our testing has shown the specialised cross match
filtering performs better than the generic dec plane sweep. Both methods
produce the same results, as can be verified by reader using the supplied code

[5].

The tests are performed as a pair wise comparison of the six test catalogues, each
prepared by extracting the spatial description of the objects with their associated
errors, sorted and written as binary files. This processing has been described in
Section 2. The scriptcm al | _t est's. csh was used to run the tests on the machine
described in Appendix A.

The following sections tabulate the results for the benchmarking of catalogue cross
matching the six catalogues against each other, using a 1.96 z_al pha, indexed
active list, angular separation refine and cross match specific filter. Note that in our
testing we only count the number of matches: the details of which objects are
matched are not recorded to a file (although this can be easily accommodated in the
code).

© Copyright 2004 CSIRO ICT Centre Page 8 of 22

Catalogue Cross Matching 26/Jul/2004

The tables below record the number of objects that initially fail to be matched using
the plane sweep (the “A” catalogue being the one common to all the tests in the
table, for example in the first table N/M A refers to the catalogue 1XMM and N/M B
the other catalogue it is matched against). The filter candidates are the number of
candidate pairs found by the plane sweep filter. The refine drops the number of
candidate pairs that fail the refine condition. The refine candidates is the final count
of candidate pairs: the number of objects from the two input catalogues that we
consider as warranting further investigation, based on the objects spatial location.

The mean and max columns refer to the sizes of the active list when a test object is
compared with those in the active list during the plane sweep filter.

3.1 1XMM
Catalogue Time N/M N/M B Filter Refine | Refine | Mean | Max
elap cpu A cand drops | cands
IXMM 1.0s 1.0s 0 0 667069 606184 | 60885 81| 342
SUMSS 1.0s 0.3s | 56619 134807 2120 2028 92 23 | 305
Tycho2 4.0s 4.2s | 56653 2430409 14085 14025 60 22 | 299
2MASS 13.9m | 13.8m | 54541 | 470990423 | 4000487 | 3997889 2598 24 | 300
USNO A2 | 14.9m | 14.8m | 54611 526278735 | 2545774 | 2543555 2219 23 | 300
USNO B1 | 30.9m | 30.3m | 52103 | 1045170444 | 6024872 | 6019355 5517 23 | 300
3.2 SUMSS
Catalogue Time N/M A N/M B Filter Refine | Refine | Mean | Max
elap cpu cand drops | cands
IXMM 1.0s 0.2s | 134807 56619 737 645 92 117 | 221
SUMSS 1.0s 0.5s 0 0 136404 1526 | 134878 83 | 164
Tycho2 3.0s 2.5s | 134803 2430400 4210 4142 68 57 | 137
2MASS 8.6m 8.5m | 119250 470975187 537318 519533 17785 59 | 137
USNO A2 | 10.0m 9.9m | 106183 526247587 | 1109460 | 1076164 | 33296 57 | 137
USNO B1 | 19.1m | 18.6m 94150 | 1045111603 | 1902488 | 1838323 | 64165 59 | 137
3.3 Tycho2
Catalogue Time N/M A N/M B Filter Refine | Refine | Mean | Max
elap cpu cand drops | cands
1IXMM 4.0s 3.9s | 2430409 56653 253 193 60 502 | 1206
SUMSS 3.0s 2.6s | 2430400 134803 343 275 68 197 | 476
Tycho2 8.0s 7.7s 0 0 | 2443550 0 | 2443550 5 19
2MASS 14.5m | 14.4m 559310 469124481 | 2384282 | 512964 | 1871318 14 41
USNO A2 | 16.0m | 15.9m | 1499714 525353170 | 1324503 | 393747 | 930756 4 21
USNO B1 | 32.6m | 32.1m 1| 1042733504 | 2462964 7532 | 2455432 18 46

© Copyright 2004 CSIRO ICT Centre Page 9 of 22

Catalogue Cross Matching 26/Jul/2004
3.4 2MASS
Catalogue Time N/M A N/M B Filter Refine Refine Mean Max
elap cpu cand drops cands
IXMM 67.2m 67.1m | 470990423 54541 63982 61384 2598 | 103184 | 226766
SUMSS 33.1m 32.9m | 470975187 119250 57410 39625 17785 | 47381 | 108385
Tycho2 49.6m 49.5m | 469124481 559310 2430417 559099 1871318 4278 7429
2MASS 92.4m 92.1m 0 0 | 477852377 6058045 | 471794332 5564 9602
USNO A2 90.7m 90.5m | 295699768 | 351016933 | 325598947 | 150296000 | 175302947 4624 7485
USNO B1 | 148.7m | 148.3m | 280032290 | 848377342 | 482563209 | 285598003 | 196965206 5726 9494
3.5 USNO A2
Catalogue Time N/M A N/M B Filter Refine | Refine Mean Max
elap cpu cand drops cands
IXMM 63.2m 63.1m | 526278735 54611 24711 22492 2219 | 112312 308395
SUMSS 36.3m 36.1m | 526247587 106183 104968 71672 33296 57048 136247
Tycho2 24.4m 24.2m | 525353170 1499714 1111142 180386 930756 947 2037
2MASS 81.7m 81.4m | 351016933 | 295699768 | 234859609 | 59556662 | 175302947 3480 8516
USNO A2 47.3m 47.1m 0 0 | 526283471 298 | 526283173 1244 2339
USNO B1 | 136.2m | 135.8m | 110853527 | 610894351 | 512665012 | 76741634 | 435923378 4206 7922
3.6 USNO B1
Catalogue Time N/M A N/M B Filter cand Refine Refine Mean Max
elap cpu drops cands
IXMM 252.3m | 251.9m | 1045170444 52103 89926 84409 5517 | 223291 | 468456
SUMSS 108.4m | 108.1m | 1045111603 94150 200810 136645 64165 | 100065 | 252001
Tycho2 199.5m | 199.2m | 1042733504 1 2473691 18259 2455432 7743 14363
2MASS 238.7m | 238.4m 848377342 | 280032290 445789157 | 248823951 196965206 10629 20683
USNO A2 | 200.2m | 198.8m 610894351 | 110853527 582111986 | 146188608 | 435923378 8360 14492
USNO B1 | 281.4m | 281.0m 0 0 | 1339665262 | 176770886 | 1162894376 11355 20012

4 Nearest Neighbour Matching

Nearest neighbour matching is described in detail in [4] and a code fragment of the
C++ implementation is presented in Appendix D. The program used to benchmark
the nearest neighbour matching can be found in the source distribution [5] (the

program nn_fi | e. cpp). This program has a number of options that control
algorithm parameters, all of which are the same as for cross matching described
above, except for the first listed below:

© Copyright 2004 CSIRO ICT Centre

Page 10 of 22

Catalogue Cross Matching 26/Jul/2004

* The maximum distance, in arc seconds, within which two objects are considered
neighbours. The objects spatial location is assumed to be correct, that is, no
location errors are considered when determining a match.

* Indexed active list or “simple” list. As for cross matching..
* The filter method to use. As for cross matching.

Note there is no choice of what refine option to use: the great circle distance
measured as an angle is compared to the maximum distance provided. A spherical
bounding box refine could be used before this, as provided for cross matching, but
this has been shown to not be effective and so is not available as an option.

The tests are performed upon a single catalogue. We don’'t need the spatial location
error details, but the files prepared for cross matching have been reused instead of

recreating them without this extra information. The script nn_al | _t est s. csh was
used to run the tests on the machine described in Appendix A.

The following sections tabulate the results for the benchmarking of nearest
neighbours matching for the six catalogues, using max distances of 1, 5, 15, 30, 45
and 60 arcseconds, an indexed active list, and nearest neighbour specific filter. Note
that in our testing we again only count the number of matches.

The tables below record the number of objects that fail to be matched using the plane
sweep (N/M). The filter candidates are the number of candidate pairs found by the
plane sweep filter. The refine drops is the number of candidate pairs that fail the
refine condition. The refine candidates is the final count of candidate pairs: the
number of object pairs within a catalogue being neighbours within the maximum
distance threshold provided.

As before, the mean and max columns refer to the sizes of the active list when a test
object is compared with those in the active list during the plane sweep filter.

4.1 1XMM
Max Time N/M Filter Refine | Refine | Mean | Max
Distance elap cpu cand drops cands

1s 0.1s | 55089 1205 214 991 0 7

5 1s 0.1s | 48493 7957 459 | 7498 1 17

15 Os 0.1s | 44920 12162 728 | 11434 4 33

30 Os 0.2s | 35604 29070 5275 | 23795 9 57

45 1s 0.2s | 26630 57910 10538 | 47372 13 76

60 Os 0.3s | 20157 95017 17323 | 77694 18 99

© Copyright 2004 CSIRO ICT Centre Page 11 of 22

Catalogue Cross Matching 26/Jul/2004

4.2 SUMSS
Max Time N/M Filter Refine | Refine | Mean | Max
Distance elap cpu cand drops | cands
Os | 0.3s | 134870 0 0 0 0 8
5 1s | 0.2s | 134862 17
15 Os | 0.2s | 134830 26 20 11| 37
30 Os | 0.3s | 134698 109 23 86 23| 60
45 Os | 0.3s | 134412 530 298 232 35| 78
60 Os | 0.3s | 132233 2193 850 | 1343 47 | 97
4.3 Tycho2
Max Time N/M Filter Refine | Refine | Mean | Max
Distance elap cpu cand drops | cands
5s | 5.2s | 2417378 6546 1 6545 4 19
5 6s | 5.8s | 2415614 7658 228 7430 22 | 57
15 6s | 6.4s | 2406586 13613 1594 | 12019 67 | 130
30 8s | 7.3s | 2371751 36512 6612 | 29900 135 | 226
45 8s| 7.3s | 2313678 75963 15306 | 60657 203 | 324
60 8s | 7.9s | 2236328 | 130358 26915 | 103443 271 | 413
4.4 2MASS
Max Time N/M Filter cand Refine Refine Mean | Max
Distance elap | cpu drops cands
32m 31m | 469523713 850380 112742 737638 954 1666
5 66m 65m | 416405871 45914760 16129812 29784948 4783 7794
15 117m | 117m | 140114515 666914168 149646880 517267288 | 14357 | 22877
30 182m | 181m | 44102276 2757829704 598319340 | 2159510364 | 28712 | 45640
45 272m | 272m 17303150 6240581041 | 1344614417 | 4895966624 | 43068 | 68233
60 402m | 402m 6998825 | 11112999498 | 2388833195 | 8724166303 | 57424 | 90649
© Copyright 2004 CSIRO ICT Centre Page 12 of 22

Catalogue Cross Matching 26/Jul/2004
4.5 USNO A2
Max Time N/M Filter cand Refine Refine Mean | Max
Distance elap | cpu drops cands
37m 37m | 526261601 969824 960184 9640 1123 2132
5 78m 77m | 469917761 40889182 10063258 30825924 | 5608 9892
15 128m | 128m | 177230593 588136111 135112693 453023418 | 16814 | 29328
30 188m | 188m | 43740360 | 2518709883 552328392 | 1966381491 | 33623 | 58204
45 273m | 273m 13632112 | 5726645794 | 1238447639 | 4488198155 | 50433 | 87137
60 406m | 401m 4303218 8011509260 116087
4.6 USNO B1
Max Time N/M Filter cand Refine Refine Mean Max
Distance elap cpu drops cands
1 91m 90m | 994590835 34897623 9036969 25860654 2060 3780
5 214m 214m | 651989429 356491410 50120384 306371026 10280 18103
15 339m 338m | 190848395 2459715760 512184367 1947531393 | 30822 53419
30 551m 550m 29386840 9808473524 | 2101523088 | 7706950436 61635 | 106306
45 861m 859m 3893018 | 21992477605 | 4700760309 | 17291717296 92448 | 159375
60 1284m | 1284m 394387 | 38997682544 | 8334398845 | 30663283699 | 123261 | 212185

5 Conclusions

Cross matching two catalogues consisting of half a billion objects can be achieved in
around 4 hours elapsed (2.5 hours to prepare the catalogues and 1.5 to do the
matching itself). When one of the catalogues consists of a billion objects the total
time taken is about 6 hours elapsed.

Evaluation of nearest neighbours for a catalogue of one billion objects takes 3 to 23
hours, depending on the distance threshold used (1 — 60 arcseconds). For half a
billion objects the range is 2 to 8 hours.

These elapsed times can be reduced by preparing the catalogues in parallel or by
utilising existing catalogues that can be accessed in declination order. When this is
the case, the cross matching can be achieved in 1.5 to 2.5 hours, depending on the
sizes of the catalogues used. Similarly reduced times for neighbours evaluation can
be seen from the results of Section 4.

We have trialled different algorithm implementations for performing plane sweep
matching, most notably filter processing, the type of active list used and various
refine chains. We have only documented the fastest options here, but the code
distribution can be used to experiment with these alternatives. These different
implementations also provide a means of ensuring the code is working correctly:

© Copyright 2004 CSIRO ICT Centre Page 13 of 22

Catalogue Cross Matching 26/Jul/2004

regardless of the alternatives used, the final results should always be the same, and
this has been the case for all the tests we have performed.

There are a couple of sanity checks to be mindful when running the benchmarking
tests:

» The final refine results should be independent of the order the catalogues are
cross matched. For example, testing Tycho2 with USNO B1.0 should give the
same results as testing USNO B1.0 with Tycho2.

» The number of self join matches should always be greater than or equal to the
number of objects in catalogue.

* The number of initial filter rejects doing a self join should always be O.

* The number of filter candidates should equal the sum of the refine candidates
and the refine (“false”) drops.

While these considerations may seem obvious, they were invaluable when checking
the code was producing plausible results. We especially had problems with the
commutability criteria: using the optimiser during compilation impacted here as
explained in Appendix E.

The reader should be mindful of the following when interpreting our results:

* We have not recorded to disk the final candidate pairs and doing so will incur cost
on the times reported. The code supports this functionality, but we did not do so
for the benchmarking tests.

» The overall elapsed benchmarking times could be reduced by pre processing the
input catalogues and using them in memory as input to the plane sweep
matching. We have been mostly concerned with matching performance in the
presentation of our results in Sections 3 and 4.

» Itis more efficient to pass the smaller catalogue through the active list and use
the larger catalogue as the source of test objects to match against the active list.
For instance compare the times to cross match the Tycho2 catalogue with the
USNO B1 (34 minutes) with the other way around (over 3.5 hours).

* We believe all the catalogues used have object coordinates specified in J2000 at
the epoch 2000, except for USNO A2.0 which uses the epoch of the plate. In
order to sensibly cross match, for example, USNO A2.0 with B1.0, the star
positions stated in B1.0 should have proper motions applied to take its positions
to the epoch of the object to which it is being matched. We have not done this.
For similar reasons, when astrometric catalogues are used, the matching
procedure should take into account the errors in proper motion in conjunction with
the stated positional errors when matching objects at different epochs.

* The USNO A2.0 catalogue does not include position errors. We have adopted the
value of 0.2 arcseconds for the purposes of cross matching.

There are a number of further avenues that can be explored with this work. The

implementation could be parallelised. New matching algorithms applied, for example
cluster identification. The pplane sweep performance is sensitive to the size of the

© Copyright 2004 CSIRO ICT Centre Page 14 of 22

Catalogue Cross Matching 26/Jul/2004

active list. The performance characteristics could be further explored and there is
scope for improved implementation in this area. Use other catalogues: we are
currently preparing to use a copy of the SuperCOSMOS data. Use catalogues stored
in a database environment. Seek collaboration from astronomers to perform further
refinement processing to identify pairs of objects based on astronomy concepts, and
not just spatial proximity.

As a final note, some catalogues are published with a list of the nearest matches
from other catalogues. For example 1XMM includes a list of up to 9 of the closest
matches found for the 2MASS and USNO A2.0 catalogues. This can be used as a
comparison for our results.

6 Acknowledgments

This work would not have been possible without access to large astronomy
catalogues. The authors would specifically like to thank David Monet and his
colleagues at the USNO for providing a copy of the USNO B1.0 catalogue and to
Nigel Hambly for access to the SuperCOSMOS data (in progress at time of writing).

© Copyright 2004 CSIRO ICT Centre Page 15 of 22

Catalogue Cross Matching 26/Jul/2004

Appendix A System Configuration

The plane sweep matching benchmarks have been performed on a machine with the
following configuration:

e Dell PowerEdge 2650 server
e Dual Pentium Xeon 2GHz CPUs
e 2Gb main memory
* 5 X RAID5 storage arrays using 10K RPM UltraSCSI 160 disks (maximum
transfer rate between the RAIDs to the server is 160MB/s and each RAID box
is on its own SCSI channel):
o 1 x5-way RAID5, 70GB disks, usable storage ~0.3TB
0 2 x14-way RAID5, 70GB disks, usable storage ~0.9TB each
0 2 x14-way RAID5, 140GB disks, usable storage ~1.8TB each

The software has been compiled using g++ (version 2.95.4) on Debian Linux 2.4.20.

© Copyright 2004 CSIRO ICT Centre Page 16 of 22

Catalogue Cross Matching 26/Jul/2004

Appendix B Dec Plane Sweep Algorithm

The plane sweep matching code was originally written to perform catalogue cross
matching. Then we included a nested loop filter as a baseline comparison for
debugging purposes. Then neighbours was introduced and we are considering other
matching algorithms as well (notably cluster identification).

With this evolution of the code, we decided to separate the filter processing
(identifying candidate pairs) from the matching algorithm (the definition of a match).
So we have a filter that uses a matcher. There are currently two filters:
DecPlaneSweep and NestedLoop. The nested loop should only be used on very
small catalogues. The generic plane sweep algorithm in C++ is:

bj ect const * test(hject = matcher->next Test bj ect ();
bj ect const * activeObject = matcher->next ActiveQbject();

/* Loop: for as long are there are nore test objects */
while (testObject !'= 0)
{
doubl e | ower Bound
doubl e upper Bound

mat cher - >get Lower Bound(t est Qbj ect) ;
mat cher - >get Upper Bound(t est Qbj ect) ;

/1l remove fromactive |ist objects bel ow | ower bound
mat cher - >f | ushAct i veQbj ect s(| ower Bound) ;

/1 populate the active list with candi dates
while (activeGbject '= 0 &&

acti ve(bj ect - >get Dec() <= upper Bound)
{

if (activeQbject->getDec() < | owerBound)

{

/1 no need to put it in - it cannot match
mat cher - >r eport Acti veNoMat ch(acti veQbj ect);
del ete activebject;

}

el se

{
}

activenj ect = mat cher->next ActiveQbj ect();

}

mat cher - >t est (t est Obj ect) ;
test Cbj ect = mat cher->next Test Obj ect () ;

}

/1 no nore test objects, but may still be some in active |ist
mat cher - >f | ushActi veCbj ect s(acti veQbj ect) ;

mat cher - >addAct i veQbj ect (acti veQbj ect) ;

The idea is that the DecPlaneSweepFilter can be used with any matching algorithm.
To achieve this, the matching functionality has been abstracted into an interface and
a specific matcher (CrossMatch or Neighbours) must provide the implementation for

© Copyright 2004 CSIRO ICT Centre Page 17 of 22

Catalogue Cross Matching 26/Jul/2004

it. This way the same matcher can be used with different filters to achieve the same
result, although the computational cost will vary. This worked well for cross match,
but less so for neighbours since there is only a single input catalogue and the generic
algorithm assumes two. The neighbours matcher does support the generic interface,
but it is less elegant and possibly more difficult to understand.

As well as supporting the generic matcher interface required by the filter, a matcher
may implement an optimised filter method. Note that if this method is used, then the
generic filter processing (eg plane sweep or nested loop) is not used. The matcher
specific filter is used for benchmarking, the generic option is for further validation that
the matching is working correctly.

The following two appendices detail the cross match and nearest neighbour
optimised filter algorithms using C++.

© Copyright 2004 CSIRO ICT Centre Page 18 of 22

Catalogue Cross Matching 26/Jul/2004

Appendix C Cross Match Algorithm

The following is the C++ code used to perform a plane sweep specifically for cross
matching two catalogues. This is a bit more involved that the generic plane sweep
algorithm as it identifies cases where one catalogue can be read ahead in order to
“catch up” to the other one.

doubl e | ower Bound 0.0
0.0;

doubl e upper Bound

bj ect const * activeObject = nextActivehject();
bj ect const * test(Object = nextTest vj ect();

if (testObject = 0)

{
| ower Bound = get Lower Bound(t est Obj ect) ;
upper Bound = get Upper Bound(t est Obj ect) ;
}
while (testObject = 0)
{
if (activeObject == 0 && activelist->i sempty())
{

/* There's nothing left to test our objects against. */
raceThr oughProducer (t est Producer, testCbject, uTest Consurmer);

br eak;
}
if (activeObject == 0) /1 know activelList isn't enpty (see above)
{ test(test Qbject, |owerBound, upperBound);
Llse

/* Both object producers have nore objects to offer. W need to
* deci de which object to handle next. */
if (activeQbject->getDec() <= upperBound)
{
/* The next active object could match the current test object.
* Handle it first. */
if (activeQObject->getDec() >= | ower Bound)
{
/* The next test object is reasonably close, so it is possible
* for this active object to match somet hi ng.
* Add it to the active list. */
activeli st ->pushBack(acti veCbj ect) ;
activeCbject = nextActiveCbject();

}
el se
{
/* The next test object is too far ahead.
* The next active object cannot match anything, and the objects
* currently in the active list cannot further match anything.
* So lets clean up the active list, and then race through the
* active objects until we reach a object that can match
*/
/* Enpty the active list. The active list will report its

© Copyright 2004 CSIRO ICT Centre Page 19 of 22

Catalogue Cross Matching 26/Jul/2004

* objects as matched or unmatched as the case may be. */
activelLi st ->cl ear (uActi veConsuner) ;

/* Now race through the active objects until we reach an object
* that can match. */
activeCbject = raceThroughProducer (activeProducer, activeject,
| ower Bound, uActiveConsuner);
}
}

el se

/* The next active object is too far ahead.
* Handl e the next test object first */
test (test Obj ect, | owerBound, upperBound);
}
}
}

flushActi veObj ects(activeObject);

It is hoped the operation of supporting methods may be understood from the
comments, otherwise refer to the code in [5].

© Copyright 2004 CSIRO ICT Centre Page 20 of 22

Catalogue Cross Matching 26/Jul/2004

Appendix D Nearest Neighbour Algorithm.

The following is the C++ code used to perform a plane sweep specifically for
evaluating the nearest neighbours within a catalogue. This is simpler than the generic
plane sweep. If candidate pair (a,b) is reported, we don’t subsequently find the
candidate pair (b,a). This can trivially be included by reporting (b,a) as a match at the
same time as (a,b). Note that this has not been done and the counts reported in
Section 4 should be doubled if this is required.

hj ect const * test(Object = next Cbject(producer);

while (testCbject !'= 0)

{
doubl e | ower Bound = get Lower Bound(t est Obj ect);
activelLi st ->del et ePri or Obj ect s(| ower Bound, uConsuner);
bool matched = activeLi st->testbject(testbject, maxDi stance, paircCons);
activeli st ->pushBack(test Cbj ect, matched);
t est Obj ect = next Obj ect (producer);
}
/1 no nore test objects, but there may still be sone in the active |ist

activeli st->cl ear (uConsurer) ;

© Copyright 2004 CSIRO ICT Centre Page 21 of 22

Catalogue Cross Matching 26/Jul/2004

Appendix E Notes on C++ implementation

We have used our own string class as a wrapper to the STL st ri ng since the
ccmal | oc memory leak tool reports leaks that we believe not to exist. To switch
between using the normal STL st ri ng class and one that should be ccral | oc
friendly, define STRI NG_LEAK DEBUG during compilation.

We have used the compiler option - f f | oat - st or e when compiling with the
optimiser. This is needed to ensure the tests are commutative. Without this defined,
the optimiser generates code that reports different results depending if catalogue A is
matched with catalogue B or vice versa. When defined, the numbers are the same.
See the gcc man page for details.

Initial attempts to open a large file (greater than 2 Gbytes) proved temporarily
difficult. In case this is true on other platforms, we have placed all file i/o includes and
definitions into the file Fi | eHeader . h. This is then included from those classes that
need to perform file processing. Refer to the class Fi | eUt i | for details of opening
large files on debian UNIX using the g++ compiler.

© Copyright 2004 CSIRO ICT Centre Page 22 of 22

