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ABSTRACT

The catalogue matching problem is a ubiquitous problem in datafusion in Virtual
Observatories. It deals with reporting the locationally coincident pairs of objectsin
two astronomical databases where locations are imprecise. Our algorithm applies the
filter-and-refine and plane sweep techniques. Pre-processing consists of a sort by
declination, and the active list is a queue indexed by a binary tree. The algorithmis
O(NlogM) in both 1/0 and processor costs and has low-main memory requirements.
Empirical assessment on matching problems of up to 1.5 billion objects suggests the
algorithm has performance at least an order of magnitude better than the techniquesin
current use.

1 INTRODUCTION

One of the central motivations for Virtual Observatoriesis that integrating data from two
or more catalogues will provide richer or more extensive data sets that can be explored
using data mining techniques such as classification to detect new types of bodies or to
find more instances of rare or unusual types of bodies. The fundamental data fusion
operation is to identify the objects appearing in both catalogues on the basis of
equivalence of their spatial references. Catal ogue matching can be required either to the
merge of a number of catalogues to form a new catalogue to be used for many purposes
or asajoin within a search spanning a number of catalogues [1].

The operation isinherently costly, because the catalogues of interest are very large and
the matching operationisintrinsically ajoin. The SuperCOSMOS catalogue of over a
billion bodiesis an early representative of the large catalogues now being generated by
sky surveys[2]. Extrapolation of the solution times reported for smaller data sets
indicates that the current algorithms with costs that are quadratic with problem size
would have solution times of days for merging catalogues of thissize. Thereisclearly
merit in investigating faster agorithms.



In this paper, we report an agorithm to determine the pairs of objects, drawn from two
catalogues, that are spatialy equivalent. Often the set of pairs would be subjected to
further tests of consistency in red shift, their emissions profile and so on. We assume that
spatial indexes are not available. Our algorithm has pre-processing costs of O(NIogN +
MlogM) where N and M are the number of objects in the input catalogues. The matching
operation proper has 1/0 costs of O(N + M) and processor costs of O(NlogM).

We begin by formally describing the problem and then present our algorithm as based on
the filter-and-refine strategy and on plane-sweep concepts. An empirical assessment of
the algorithm shows that, with modest computing equi pment, matching of catalogues of a
billion objects can be performed in under 6 hours. We relate our algorithm to previous
work in astronomy and other areas, and conclude with an analysis of the scope of
applicability of our algorithm.

2 The Catalogue Matching Problem

There are many possible variants of the catalogue matching problem due to differencesin
the precise methodol ogies applied. We consider here only the spatial filter step of
catalogue matching. This determines pairs of objects whose locations are essentialy
coincident. The object pairs from the spatial filter step would then be subjected to
validation tests that check consistency of the other attributes of each pair of objects. To
address the problem as generally as possible, and to establish some terminology, we
begin with aformal statement of a core form of the problem.

We are given two catalogues B and C that have N and M objects (bodies) respectively.
Each record (tuple) in B and C has a unique object identifier. The spatia location of an
object isanormally distributed random variable described by a mean location in right
ascension and declination coordinates, and a representation of variance. More fully, the
location of an object is described by an ellipsoid of arbitrary orientation, which in turn
can be represented by the orientation of its magjor axis and the lengths of its major and
minor axes. The ellipsoid represents the area within which the object falls within a 95%
confidence level. Thelengths of the major and minor axes then are the standard
deviations for the imprecision of the location within the local coordinate system of the
ellipse. For smplicity of presentation, we will present our agorithm in terms of circles
rather than ellipsoids. The modifications to deal with ellipsoids are straightforward, but
lead to longer expessions. We will allow, however, the standard errors to vary between
objectsin acatalogue. That is, we have two catalogues B and C defined as

B : {b[oid, ra, dec, o]}
C:{doid, ra, dec, o]}

Note the use of standard notation so that b[ra], for example, refers to the attribute ra for
an object instance from B.



Two objects will be accepted as spatially equivalent if the angular distance between them
Isless than athreshold expressed in terms of their standard errors. We can represent this
test generally by a function that calculates the angular separation of apair of objects,
relates the separation to the standard errors for the two objects and returns a Boolean
valueif the separation is less than some specified threshold p. We denote this function
by

t (b[ra], b[dec], b[a], c[ra], c[dec], c[c], p) — bool

The catalogue matching problem then isto form the sets D (the pairs of objects from B
and C that are accepted as matches), E (the objectsin B that are not in D) and F (the
objectsin Cthat arenot in D). That is,

D ={d: (b,c)}|t (b[ral, b[dec], b[c], c[rd], c[dec], c[c], p) — TRUE for al b, c}
E={b|t(b[ra], b[dec], b[s], c[ra], c[dec], c[c], p) — FALSE for al b}
F={c|t(c[ra], b[dec], b[c], c[ral, c[dec], c[c], p) — FALSE for dl c}

We assume that the source catal ogues are presented in no known sequence, that there are
no pre-existing indexes on the catalogues, and that the catalogues are too large to be held
in main memory. We also assume that the catal ogues have previously been standardised
in their coordinate systems and epoch.

3 ALGORITHM OUTLINE

The design of the algorithm applies two concepts. Thefirst isto use the well-known
filter-and-refine strategy of geospatial database. The second isto apply avariation of the
plane sweep algorithm to identify pairs of points that are near-neighbours.

Filter and Refine

Filter-and-refine strategies [3] have two steps. In the filter step, a weakened form of the
problem is solved to generate rapidly a set of candidates, typically aiming to minimise
I/0O costs. The candidates are guaranteed to include all pairs of objects (hits) satisfying
the criteria of the full form of the problem but can also include some objects (false drops)
not satisfying the full criteria. In the refinement step, the candidates are tested as
satisfying the full constraints of the problem. Choice of the weakened form then strikes a
balance between the costs of generation of a set of candidates and the costs of diagnosing
the false drops.

The full form of the problemisto report all pairs of objects whose angular separation is
less than a threshold expressed in terms of the standard errors of the two points and a
required confidence level z:

cos *(sin(b[dec])sin(c[dec])+cos(b[dec] )cos(c[dec] )cos(b[ra]—[ral) )<z(b[c]? + c[c]?)"



(This expression for the angular separation in fact leads to high inaccuracies for low
declinations, and the equivalent Haversine formulais preferable. For further details, see

[6].)

This full form can be rephrased as the problem of reporting aII pairs of Obj ects such that
one of the objectsis contained within acircle of radius z(b[c]* + c[c]?)" centred on the
other object. Our weakened form of the problem isto report all pairs of objects such that
one of the objectsis contained within the bounding box of the other object’ s circle. The
bounding box is defined by the limits of the circle in right ascension and declination.

Taking into account the necessary correction to right ascension values for declination
effects, the accepted candidate pairs are the pairs (b, ¢) such that

| blra] —c[ra] | < sin™(sin(z(b[s]” + c[o]%)") / cos(b[dec])) (1)
and
| bldec] —c[dec] | < z(b[o] + c[c]*)* 2

Evaluating the Candidates

The agorithm to identify candidate pairs follows the basic concepts of the plane sweep
algorithm [4] by structuring processing around aregular set of events. The event in this
case is a search for the objects from C that match a specific object b from B. The set of
events is made regular by processing the objects from B in ascending sequence by
declination. (We will note later the significance of sweeping by declination rather than
right ascension.) To ensure that the search within each event is executed efficiently, we
maintain an active list of the objects from C that might match the current object from B
or further objects from B, within a maintenance policy that restricts the size of the active
list to be available when dealing with any member of B. Aswe will see, this can be
handled by a sequential traversal of C.

The agorithm, in outline, is:

1 Pre-process the catalogues B and C, by sorting them into ascending sequence by
declination;
2 For each object from B,
a. Delete from the active list any members that cannot match the current
member of B or any further members of B, on the basis of declination;
b. Insert into the active list any members of C that might match the current
object from B on the basis of declination;
c. Search within the active list for matches against b;
3 Terminate, by flushing any remaining members of the active list.



Maintenance of the active list must ensure that it contains all members of C that satisfy
the declination constraint on matching (2) for the current object from B. That is, the
insertion discipline must ensure that it contains all members of C such that

b[dec] — z(b[c]? + c[6]?)" < c[dec] < b[dec] + z(b[c]? + c[c]?)"

The deletion discipline restricts the size of the active list by dropping any members that
can no longer match a member of B. A naive approach would be to delete any members
for which

c[dec] < b[dec] — z(b[c]* + ¢[c]?)"

However, because the imprecisions are not uniform, there could be a member b’ of B still
to be encountered for which

b[dec] — z(b[s]? + c[c6]%)" < b[dec] — z(b[c]? + c[c]?)"
We therefore modify our membership of the active list to be
b[dec] — z(max(b[c])? + max(c[c]%))" < c[dec] < b[dec] + z(b[c]? + max(c[c]?))*

The search of the active list in Step 2c is arange search on right ascension, to find those
members of the active list that also satisfy Constraint (1). We require the range to cover
all members of the active list such that

b[ra] — z(c's* + 6’ < c[rd] < b[ra] + z(c'y>+ ¢')"
where

o'p = sin"(sin(b[o])/cos(b[dec]))
o'c= sin*(sin(c[c])/cos(c[dec)))

The Data Structurefor the Active List

As deletion and insertion both occur in ascending order by declination, the active list can
be implemented as a FIFO (first in, first out) queue with head and tail pointers. To
support access by alower bound on right ascension and traversal to the upper bound, a
threaded binary tree on right ascension isused. The specific actions areto identify the
active list member with the largest right ascension less than the lower bound of the range
and then traverse the tree to the upper bound.

Analysis of the expected size of the active list shows that it is small and can beheldin a
main-memory data structure. The expected length of the activelist is O(M) and varies
with the cosine of the declination of the current object from B. Assuming auniform
distribution of sources about the celestial sphere, the active list will be largest when the



sweep lineislargest; that is, at the equator. This can be estimated by the number of
sources from the active catalogue whose declinations lie in a strip of width 2 * (max(b[o]
+ max(c[o]) / 60 (assuming that b[c] and c[c] values are expressed in arcminutes). The
area of this strip may be calculated as 4n sin(c), where 6 = (max(b[c]) + max(c[c])/60.
As aproportion of the total surface area of the sphere, thisareais:

sin((max(b[o]) + max(c[c]))/60)

and the expected number of objects from C whose nominal locationslieinthisstripis
then:

M sin((max(b[c]) + max(c[c]))/60)

For a catalogue of 10° objects and with representative values of 1 arcminute for both
max(b[c]) and max(c[c]), the active list would have around 580000 elements. Allowing
eight bytes for each of the record fields and four bytes for each of the list pointers, we
calculate the space required for storage of the list at about 20Mb, with the binary tree
index requiring lesthan 7 Mb. The requirement for 27Mb of main memory isfairly
moderate in the context of current systems; this confirms that the active list can be
maintained as a main-memory data structure for the catal ogues of sizes currently
available or envisaged.

Sweeping by declination is more efficient than sweeping by right ascension. In terms of
our algorithm, sweeping by right ascension, starting at ra= 0 (for example), would
require holding in the active list the objects that could match objects on the other side of
thelinera= 0. Thiswould include the objects with small right ascensions and with
declinations placing the objects near a pole and so with ellipses with large ranges in right
ascension.

4 Analysisof Performance

In I/O costs, the algorithm is trivially O(NlogN + MlogM) for the preprocessing stage
and O(N+M) for the matching itself. For processor costs for the matching, the algorithm
is O(NlogM) through the access and maintenance costs of the binary tree.

To perform empirical performance assessment, the algorithm has been implemented in a
form notionally aimed at cases where matching isto be performed essentially as a
standalone operation, i.e. the input catalogues are in their distribution forms, and they are
not required at the completion of the matching operation. We measured the costs of both
the preprocessing and the matching operation proper.

To allow aclear assessment of the effects of catalogue size in terms of number of objects,
during the pre-processing for performance evaluation, we stripped attributes other than
the object id, declination, right ascension and imprecisions. Our pre-processing program
performs a main-memory sort, creates a binary file and determines the greatest



imprecision of any object in the catalogue. The program is customized to the format of
the distribution files.

For the tests reported below, the pre-processing and catal ogue matching programs were
implemented using g++ under Debian Linux 2.4.20 and run on aDual Pentium Xeon
2Ghz processor with 2 Gbytes of main memory. The disk was 5 RAIDS5 storage arrays
with 10K RPM UltraSCSI disks with a maximum transfer rate between the RAIDs to the
server of 80 Mb/s. For further details see [5].

Performance was assessed by pairwise matching of 6 catalogues and by matching each
catalogue with itself. Summary information on these cataloguesis givenin Table 1. The
smaller catalogues, IXMM, SUMSS, Tycho2, are distributed as asingle text file. The
USNO catalogues are distributed as a set of filesthat are digoint by declination. Itis
then only necessary to sort each file by declination. The catalogue matching program
reads the set of filesin sequence. 2MASS is also partitioned, but the partitioning creates
files of equal size, with the exception of the last, and adjacent partitions overlap in their
declination ranges. We resolve this by sorting each file by declination during
preprocessing, and reading from two files during the cross matching, selecting the lower
(by declination) record for action.

Preprocessing costs are given in Table 2 and the costs of matchingin Table 3. Table 3
shows solution times for (as an example) adopting Tycho2 as the catal ogue to be passed
through the active list in amatch against 2MASS and for adopting 2MASS as the
catalogue to be passed through the active list. The rows of the table show the catalogue
passed through the active list. For example, matching Tycho2 against 2MASS with
Tycho2 passing through the active list has a solution cost of 14 minutes.

Tablel
Test Catalogues
Catalogue N records Max
Imprecision
(Degrees)

1IXMM [7] 56,711 0.015615
SUMSS [8] 134,870 0.006167
Tycho2 [9] 2,539,913 0.000051
2MASS [10] 470,992,970 0.000336
USNO A2 [11] 526,280,881 0.000056
USNO B1[11] |1,045,175,762 0.000278




1IXMM
SUMSS
Tycho2
2MASS
USNO A2
USNO B1

IXMM
SUMSS
Tycho2
2MASS
USNO A2
USNO B1

Table2

Pre-processing Costs

Times given asmm:ss

Catalogue Times
elapsed cpu
1IXMM 0:02 0:01
SUMSS 0:02 0:03
Tycho2 0:34 0:33
2MASS 106:00 95:00
USNO A2 45:00 43:00
USNO B1 95:00 80:00
Table3

Matching costs as elapsed time. Times given as mm:ss.

1XMM SUMSS Tycho2
0:01 0:01 0:04
0:.01 0:01 0:03
0:04 0:03 0:07
67:13 33:03 49:38
63:13 36:15 24:23
252:16 108:25 199:31
Table4

2MASS
13:55
8:36
14:31
92:21
81:39
238:43

Maximum Lengthsof ActiveList

IXMM
342
221

1206
226766
308395
468456

SUMSS  Tycho2
305 299
164 137
476 19
108385 7429
136247 2037
252001 14363

2MASS
300
137

41
9602
8516
20683

USNO A2
14:59
10:02
16:02
90:43
47:17

200:13

USNO A2
300

137

21

7485
2339
14492

USNO B1
30:51
19:06
32:36

148:41
136:14
281:29

USNO B1
300

137

46

9494
7922
20012



5 Reated Work

Reported algorithms for the catalogue matching problem have been based on exhaustive
enumeration and by index-based joins. Exhaustive enumeration (the comparison of all
possible pairs of objects) has been reported, for example by Malik et a [13] asthe basis
for the XMATCH operation in SkyQuery. This approach isclearly O(NM) in processor
performance and O(N+M) in 1/O if the catal ogues can be held in main memory. The
approach can be readily parall€elised by binning or zoning to restrict pair-wise
comparisons by subregions [13,17].

Index-based joins have been reported by Kunzst [12], Page [14] and Kalpakis et a [15].
Kunzst et al suggest a nested |oops strategy. For each object in one of the catalogues, a
search is made, using an index on HTM keys, for objects with keys corresponding to the
same HTM cell or neighbouring cells. Page has performed performance evaluations of
matches based on one-dimensional keys such as HTM and HEALPix [16,18] and with R-
trees. The preprocessing timesto load data and generate the R-tree indexes for two data
sets of 5M objects (2MASS) and 3.6M objects (a subset of USNO B1) were 617 seconds
and 442 seconds respectively. The match operation itself was 283 seconds.

The catalogue matching problem is closely similar to the neighbour-finding problem
posed by Gray et al [17]. Thisdeadswith finding al pairs of objects, from asingle
catalogues that are within a specified distance of each other. Gray reports an approach
using exhaustive enumeration with zoning with a performance of 2800 objects per second
on atest problem of 154000 objects. The neighbour-finding problem is present in the
Computational Geometry literature as the fixed-radius al neighbours problem. Optimal
algorithms with O(NIogN + k) performance, where k is the number of pairs found, have
been reported applying techniques with high pre-processing costs to generate a degraded-
d grid [18] or aVoronoi tessellation. [19,20].

Any comparison of performance data must be tentative. The data for other algorithmsis
typically for asingle problem only, and the implementation environments differ widely.
Comparison of the performance reported here and those of the methods of Gray et a and
of Page for problems of comparable size indicates that our algorithm is faster by at least
an order of magnitude for moderate-sized problems, and consideration of the orders of
complexity suggests that the advantage would be higher for large problems. However, it
isunclear if implementation within a database management system kernel is
advantageous or disadvantageous in terms of raw performance. Certainly there are
collateral benefits in a database implementation in the database system’ s ability to
optimise complex operationsinvolving ajoin and a selection (for example).

6. Conclusions

We have reported an algorithm for catalogue matching that is logarithmic in both I/O and
processor costs and low main-memory requirements, achieved by applying filter-and-
refine and plane sweep concepts from geospatial database and computational geometry.
Empirical performance assessment shows solution times of around 6 hours elapsed to



match two catalogues, one of abillion objects, the other half abillion. This appearsto
be a significant improvement over current algorithms.

This performance tends to confirm the feasibility of some key operations for Virtual
Observatories. It suggests that, within current computing technology, it is readily
possible to integrate very large catalogues. The logarithmic performance and the low
main-memory requirements of our algorithm indicate a capacity to handle catalogues
much larger than those used in the tests. The performance also has ramifications for
searches across a Virtual Observatory for objects with certain characteristics as provided
by, for example, SkyQuery. The assessments show that join operations of the sizes likely
to be present in matching a set of candidates developed in prior steps with a catalogue can
be performed in 10 seconds or less. Thismakesit feasible to perform searches on al of
the sky through queries joining multiple databases to integrate, for example, data across
the electromagnetic spectrum.

There are opportunities for further development of the algorithm. Because the algorithm
is processor-bound, parallelisation using the zoning approach of Gray et al [17] islikely
to reduce solution times significantly. The algorithm is also structured around afull
seria scan of the catalogues, and thisisinefficient where the sizes of the data sets are
significantly different. A casein point iswithin search across multiple databases where
the list of candidates could be small compared to a catalogue.
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