Notes on the Implementation of Catalogue
Cross Matching

CSIRO ICT Centre Technical Report TR-04/1847

Drew Devereux, David J. Abel and Robert A. Power
{drew.devereux, dave.abel, robert.power } @Qcsiro.au

CSIRO ICT Centre
GPO Box 664 Canberra, ACT 2601 Australia

Abstract

One of the basic problems in the integration of astronomical cata-
logues is that of how to determine which source records from different
catalogues actually refer to the same source, usually on the basis of
spatial co-location. This catalogue matching problem is inherently
costly to solve. In [1], we present an O(N log M) algorithm based on
filter-refine and plane sweep techniques. This technical report docu-
ments the design and implementation details of that algorithm.

1 Introduction

In [1], we present an O(N log M) algorithm for cross-matching of astronom-
ical source catalogues based on spatial location. This technical report doc-
uments the design and implementation details of that algorithm. For docu-
mentation of our benchmarking conditions and results, see [3].

2 Problem Definition

The catalogue matching problem is the problem of finding all pairs of source
records from different catalogues that in fact refer to the same source. There
are a number of ways to tackle this problem, but the most obvious, and most
discriminative, is to identify pairs of records whose sources are spatially co-
located. We will focus on this spatial catalogue matching problem.

There are many variants of the spatial catalogue matching problem. We
require a general version: one that can be applied in all cases, and that can
be easily tailored to specific situations and catalogues. The problem we have
chosen to address is as follows.

We are given two source catalogues A and T', each with a large number
of records in no particular sequence. We assume that the number of records
is too large to be held in main memory. Each record in each catalogue has a
unique object identifier, and a spatial location as described below. We assume
that the catalogues have previously been standardised in their coordinate
systems and epoch, so that the spatial locations are commensurable. Errors
may vary between records in a catalogue.

We shall take the apparent spatial location of a source to be a normally
distributed random variable, expressed as a mean location in right ascension
and declination coordinates, and a standard deviation value provided as a
single angular distance. Note that this assumption is valid for many but not
all catalogues.

A pair (a,t) of source records will be declared a match if we cannot be
sufficiently confident that the true locations of a and ¢ are not the same.
Essentially, this means that we accept a pair of records as matching if the
angular distance between their mean locations is smaller than some threshold
value defined by their distributions. The task of our algorithm is to identify
the set of matching pairs of source records. In addition, we will form the sets
of source records from each catalogue for which no match is found.

Formally, we denote the domain of object ids as 0ID, the domains of
right ascension and declination as RA and DEC respectively, and the domain
of angular errors as 3. Then a source s is defined as

s = {oidg, ras,decs, 05} € 0ID X RA X DEC X X
and a catalogue S of sources is just
S C 0ID x RA x DEC x X

The catalogue matching problem then is to identify, given two catalogues A
and T, the set M C A X T of matching sources, the set A C A of unmatched
sources from A, and the set T C T of unmatched sources from T. That is:

M {(a,t) : a € A,t € T,a matches t}
A : {a€A:VteT, (a,t) gM}
T : {t€T:VacAh,((a,t)gM}

2.1 Definition of a Match

We have said that a pair (a,t) of sources will be declared a match if and only
if the angular distance between them is sufficiently small that we cannot rule
out the possibility that they are spatially co-located. Let us formalize this
condition. The angular distance between two points a and ¢ on a sphere is

cos ! (sin(deca) sin(dec;) + cos(dec,) cos(dec;) cos(ra, — rat))

An equivalent formula that is both less costly to compute and less subject to
rounding errors for short distances and small angles is the Haversine formula:

5 5 (1)

We must test this distance against a threshold value determined by the
distributions of a and ¢. This threshold is defined in the following way: using
standard statistical notation, we define @ so that our desired confidence is
(1 — @)100%. That is, if we choose not to reject a candidate pair of records
unless we are 95% sure that they do not match, then our « value will be
a = 0.05. We then denote z, as the value that puts a probability of « in each
tail of a normal distribution. That is, if z ~ N(0,1), then P(z > z,) = a.

The questions whether two sources a and t are spatially co-located can be
rephrased as the question whether the distance between their true locations
is zero. Accordingly, we can express our test as a hypothesis about the
distribution of the random variable (a—t). If a are t are normally distributed
with @ ~ N(ue,02) and t ~ N(u, 0?) respectively, then (a — t) is also
normally distributed, with (a —t) ~ N (g — ps, 02 + 02). In fact, even if a
and t are not normally distributed, the central limit theorem indicates the
(a —t) will be approximately normally distributed. We are therefore not too
heavily reliant on the assumption of normality of the distributions of a and
t.

d —d —
2sin~! \/sin2 (M) + cos(dec,) cos(dec;) sin’ (M)

Our confidence in the hypothesis that a and ¢ are not spatially co-located
can be calculated as

‘ Ma — [t
\ o2+ of

which leads us to reject a candidate pair whenever
‘ Mo — [t

\/ 02 + of

|,ua - ,utl > Za/2 \/ 0_3 + O—t2

3

> Za/2

This can be expressed as

The left hand side of this equation is just the distance between the two mean
positions; thus this inequality states that our angular threshold for rejection

of the pair (a,t)s should be
Zaj2\ 02 + OF (2)

Bringing together (1) and (2), we say that a pair (a,t) of sources match if
and only if

d a_d- . a”
ZSin_l\/sin2<ecect)—i—cos(deca)cos(dect)sm2(ra2rat) <zo/n\/0H0; (3)

2

Note that this problem definition permits the same record to occur in
more than one candidate pair. Further processing may be required to further
refine the set of matches, and possibly to select the best match for each record
that occurs in multiple matches.

3 Implementation

A brute force algorithm that applied the full test to every possible pair of
sources from a pair of catalogues would scale as O(NoNp) for catalogues
with sizes N4 and N7, and so would be prohibitively expensive to run with
large catalogues. Instead we have developed an O(Nplog N4) algorithm [1].
The design of the algorithm applies two concepts. The first is the well known
filter-refine strategy of geospatial databases. The second is to apply a vari-
ation of the plane sweep algorithm to identify pairs of points that are near
neighbours.

3.1 Filter-refine strategies

Filter-refine strategies [2] are applied in two steps. In the filter step, a weak-
ened form of the problem is solved to rapidly generate a set of candidates.
The candidates are guaranteed to include all pairs of records that satisfy the
criteria of the full form of the problem, but may also include some false hits
that do not satisfy the full criteria. Thus, the filter step rapidly discards most
but not all of the non-matching pairs, so that many fewer pairs need to be
tested further. In the refinement step, the remaining candidates are tested
as satisfying the full constraints of the problem. Choice of the weakened
form must strike a balance between the cost of generating a set of candidates
versus the costs of diagnosing the false hits.

Figure 1: A Bounding Box Filter
It is much cheaper to test a point for containment in a circle’s bounding box

than in the circle itself. Here, ay is accepted; as is rejected; as is a “false
hit” — it 1s accepted by the filter but will fail the full test.

One common approach to defining a weakened form of problems similar
to ours is the use of bounding boxes. For example, a complex test for inter-
section of two complex shapes may be filtered by a simple test for intersection
of their bounding boxes. In our case, we can avoid computation of the an-
gular distance by rephrasing our test into a test whether one of our sources
is contained inside a circle whose centre is the other point and whose radius
is our threshold. The computationally expensive test of angular distance is
then replaced by two computationally trivial tests: a test whether the nom-
inal right ascension of our source falls within the right ascension range of
our bounding box; and an identical test in the declination dimension. The
tradeoff is that the circle takes up only 100(F)% of the box’s area, so that
on average 100(1 — §)% of the reported matches will be false hits.

3.2 Constructing the bounding box

The bounding box of a spherical circle s with its centre at (ras,decs) and
radius 6, is a 4-tuple

{ra_low,,ra high, dec_lows, dec high }

Figure 2: A bounding box in right ascension and declination will appear
trapezoidal near a pole.

where ra_low, and ra_high_ are respectively the lower and upper bounds

of the circle in the right ascension dimension, and dec_low, and dec_high,
are respectively the lower and upper bounds in declination. Note that when
a bounding box crosses the prime meridian (the line ra = 0) the value of
ra_lows will be greater than the value of ra high_.

It is important to recognise that the bounding box cannot be assumed to
have a rectangle appearance. Near the equator, bounding boxes will appear
rectangular, but nearer the poles they will appear increasingly trapezoidal.
For error circles that overlap a pole, the bounding box will be a circle centred
on the pole. However, we are unconcerned with the geometrical interpreta-
tion of our bounding box; what is important is the following properties:

e bounding boxes may be computed at low cost;
e points are easily checked for containment in a bounding box; and

e whenever a circle contains a point, its bounding box necessarily contains
the point.

This last point ensures that no valid candidate will be rejected by our filter.

Values for dec_lowy and dec_high_ are easily derived. For dec_low,
we simply subtract the circle’s radius from its centre declination; that is,
dec_low, = decy — ;. For dec_high_ we add the radius instead. A minor
adjustment must be made for errors circles that contain a pole. When an
error circle contains the point dec = 90°, the computed dec_high value

Figure 3: When a bounding box overlaps a pole, it defines a circular area.

will exceed 90°, and must be set to 90°. Similarly, when an error circle con-
tains the point dec = -90°, the dec_high_ value must be set to -90. In
both these special cases the error circle necessarily spans the entire range of
right ascensions, so the ra_low, and ra_high_ values are set to 0° and 360°
respectively.

Values for ra_low, and ra high are not as trivial to compute. The
distance of a point from a line of constant right ascension must be measured
along the shortest path, which is a great circle. Except at the equator, lines
of constant declination are not great circles, and so the points on a spherical
circle of lowest and highest right ascension generally will not have the same
declinations as the source’s nominal location. Consequently, simply adding
or subtracting the radius will not yield a correct boundary value (see Figure
4). The correct approach for computing ra_lows and ra high_ values is to
first compute the correction

. _, sin#f
Ara, = sin™! 2

— 4
cosdec, ()
To obtain an ra_low, value, this Ara,, instead of 6, is subtracted from the
source’s nominal right ascension. Similarly, an ra high_ value is obtained
by adding Ara, to the source’s nominal right ascension. Naturally these

calculations must be modulo 360.

3.3 The containment test

As stated earlier, testing the nominal location of source a for containment
in the bounding box of source t is extremely computationally efficient in
comparison to containment in a circle. In the declination dimension, we

7

simply require the declination of the point to fall within the declination
range of the bounding box. That is, we require that dec_low; < dec, and
dec, < dec_high,. Similar conditions hold for the right ascension dimension,
but some care must be taken to account for bounding boxes that straddle
the prime meridian. For bounding boxes that straddle the prime meridian,
we require ra_high, < ra, and ra, < ra_low; for all the other bounding
boxes, we require ra, > ra_low, and ra, < ra_high,. These conditions can
be conveniently combined into the single condition

ra_low; <ra,) = (ra, <rahigh,) = (ra_low; < ra_high
< < gn, < gn,

3.4 Defining our filter-refine strategy

We can now formally define our filter refine strategy. Given two sources
a € Aand t € T, our filter will accept the pair (a,t) as a candidate for
further testing if and only if a is contained in the bounding box of a spherical

circle whose centre is (ra;,dec;) and whose radius is z4/21/02 + 7. That is,
we require the following three conditions to hold:

dec_low; < dec,
dec, < dec_high,
(ra_-low; < ra,) = (ra, < ra_high,) = (ra_low; < ra high,)

where

dec_low; = dec; — zq/2\/02 + 0F (5)
dec_high, = dec; + 24 2\/02 + 0} (6)
sin za a + o?

/2y)) (mod 360) (7)

cos(decy)

Sin(zq/21/02 + 0f)
2)) (mod 360) (8)

cos(decy)

ra_low; = ra; — sin”~ (

ra_low, = ra; +sin~ (

Note that many of these definitions share subterms, so checking the filter
conditions is much cheaper than performance of the full angular separation
test. Yet any pair (a,t) of points rejected by the filter would be rejected
by the full test. Use of the filter will therefore cause the rejection of many
false matches at low cost. The remaining candidates are then refined by

application of the full test. In applying the full test, we note that (3) can be

rearranged to the more efficiently computed test
) Za/ 2 0—3—1_01?
(—=5—) ©

. oydec,—dec;
81112(“7 <sin

ra,—ra;)
2

)—I—cos(de cq)cos(de ct)sin2<

3.5 The plane sweep approach

Although the use of a filter-refine strategy can substantially reduce the per-
test cost of identifying matches, any algorithm that tests every possible source
pair must scale as O(N4Nr). To avoid this, we adopt as our filter step an
algorithm that ensures we only test sources against their near neighbours.
Our algorithm is based on the plane sweep approach [4].

Plane sweep algorithms were originally introduced for solving a family
of computational geometry problems, one of which is closely related to our
bounding box containment problem. In the plane sweep approach, a line
is swept through the space, generating events whenever it encounters an
entity of interest (such as the side of a bounding box). These events are
then handled in an appropriate manner. One of the standard event handling
metaphors is the maintainence of an active list, which keeps track of a subset
of entities such as the set of bounding boxes currently intersected by the
sweep line.

To illustrate, consider the classical computational geometry problem of
identifying, given a set of points and a set of rectangles, the set of all point-
rectangle containments. This is somewhat similar to our problem, but it
differs in some important ways. The standard plane sweep approach is to
sweep a line through the space, and hence through each rectangle. Whenever
the line enters a rectangle, that rectangle is added to the active list; whenever
the line exits a rectangle, the rectangle is removed from the active list. Thus
at all times the active list contains all rectangles currently intersected by the
sweep line. In addition, whenever the line encounters a point, it is tested for
containment against each of the rectangles currently in the active list. For
most problem instances, the number of rectangles in the active list is very
much smaller than the total number of rectangles, so only a very small pro-
portion of the possible containment tests are ever performed. Moreover, this
event handling strategy ensures that a point is only ever tested for contain-
ment in a rectangle if containment holds in the dimension along which the
sweep line is travelling. Accordingly, the containment test need only check
for containment in the other dimension. Careful construction of the active
list data structure can ensure that this test is efficient.

10

3.6 A plane sweep algorithm for catalogue matching

The example above is a good illustration of the plane sweep concept, but
it cannot be applied to our problem in its current form for a number of
reasons. Firstly, there is the obvious and important fact that we are sweeping
a spherical surface rather than a plane. Secondly, our bounding boxes cannot
be treated as rectangles as in the example above, because their size varies
with the attributes of the point being tested. Finally, we must address the
high 1/O costs associated with the example version. In this section, we
construct a plain sweep algorithm for our catalogue matching problem.

3.6.1 Orientation of the sweep line

Since we will be sweeping a line through our space, the first design decision we
must make is the orientation of the sweep line; that is, whether to sweep our
line along the right ascension axis or along the declination axis. In the former
case, the sweep line is a line of constant longitude from the south pole to the
north pole, which sweeps from the prime meridian (right ascension = 0°) (or
some other arbitrary right ascension) around the sphere until it reaches its
starting point. In the latter case, the sweep line is a circle of constant latitude
that starts as a point at the south pole, and grows as it moves up the sphere
until it reaches maximum size at the equator (declination = 0°), then shrinks
as it moves further up the sphere until it terminates at the north pole.

The more obvious approach is to sweep by right ascension, and this has
the advantage that the sweep line remains the same length at all times, which
means that the active list will be about the same size at all times. When
sweeping by declination, the sweep line varies in size, and hence so does
the active list. There is a slight loss of efficiency associated with this size
variation.

However, there are a number of problems with sweeping by right ascension
that outweigh this minor disadvantage. Of minor importance is the fact that
our bounding boxes may straddle the prime meridian (or any other starting
point for a sweep by right ascension). Thus the sweep line will initially
intersect these boxes despite not having encountered an intersection event.
It is not difficult to handle these special cases, and the additional processing
costs are negligible, but it does lack elegance.

A more important problem is caused by the fact that bounding boxes
very near the pole may have very large right ascension ranges; in the extreme
case where an error circle contains a pole, the bounding box will range over
the full 360° of right ascension (see Figures 2 and 3). If we sweep by right
ascension, these rectangles will spend a long time on the active list and be

11

subject to many comparisons; if we sweep by declination, the time they
spend on the active list remains small, and so many fewer comparisons are
made. Moreover, in a sweep by declination these problem bounding boxes
are handled while the sweep line is extremely small, which tends to cancel out
the difficulties caused by their large size in right ascension. The conclusion
is that sweeping by declination is substantially more efficient than sweeping
by right ascension. This has been empirically confirmed.

3.6.2 Defining the events

Recall that our bounding boxes, as currently defined, vary in size with the
attributes of the point against which they are begin tested. This makes it
impossible to construct a well-defined set of events for our bounding boxes.
We will need to slightly alter the definition of a bounding box to make our
problem amenable to a plane sweep approach. This redefinition must take
into account an additional issue:

The sweeping of a line through the space is a geometrical metaphor that
really implies little more than the accessing of events in a well-defined order.
It follows that our plane sweep algorithm will require us to sort our events
before we begin the plane sweep itself. This requirement places some sub-
stantial constraints on the nature of the events that we handle in our sweep.
Specifically, note that if we treated the entering and exiting of a bounding
box as events, then we would have to sort on these attributes. This would
require reading our data, constructing dec_low and dec_high values, and
then sorting them into ascending order. A preliminary investigation of this
option indicated that this approach has unacceptably high I/O costs.

Both of the above issues can be resolved by defining our bounding box
and events so that we can sort each of our catalogues on their nominal dec-
lination value. Our approach is as follows: Firstly, we sort both catalogues
on their nominal declination values, and while we are doing so, we note their
maximum standard deviations.

An event is triggered whenever the sweep line encounters a source (that
is, the nominal location of a source) ¢ from catalogue 7. On encountering
such a source, we add to the active list all sources from catalogue A that
conceivably could, on the basis of declination, match ¢. That is, we compute
a “worst case” dec_high, value for ¢’s bounding box, and add to the active
list all sources from A whose nominal location is less in declination than this
worst case value. To compute this worst case dec_high,, we use (6), but in
place of a specific o, value, we use the maximum standard deviation of the
catalogue A. If maxo, is the maximum standard deviation of the A, then

12

our dec_high, value is

dec_high, = dec; + 2q/2\/maxc? + o7 (10)

and we add to the active list all remaining points a € A such as dec, <
dec_high,.

The next event handling step is to remove from the active list those
sources than can no longer match ¢. By the same logic as above, we should
remove all sources up to a declination of dec_low;, where

dec_low; = decy; — Za/2\/m

We must be very careful, however, when it comes to deleting sources from
the active list, because it is possible for a not yet encountered source from
T with a larger standard deviation than ¢ to match a source from the active
catalogue that ¢ cannot (see Figure 5). Once we have deleted a source from
the active list, we cannot add it again, so we must be conservative in our
deletion policy. To account for this possibility, we use the maximum standard
deviation maxor of T in place of o;; that is, we remove from the active list
all sources whose declination is less than dec_low;, where

dec_low; = dec; — 242 \/maxafl + maxo?. (11)

The result of this event handling is that the active list is maintained so as
to contain every source from A whose nominal location is contained within
the declination range of the error circle centred on t. The active list may,
however, contain a small proportion of additional sources from A that do not
quite meet this criterion, because the bounding box that we use is slightly
larger than the strictly minimum bounding box of the error circle.

The only remaining item of event handling is the containment test itself.
Once the active list has been updated to contain all sources from the active
catalogue that match the current test source in declination, we must query
the active list for its sources that also match in right ascension.

3.6.3 Querying the active list

To individually test each source on the active list for intersection with the
test point would be unnecessarily costly. Instead, we maintain the active list
in a data structure that allows us to efficiently obtain all sources a whose
ra, is between ra low; and ra high, (taking into account prime meridian
effects). As before, ra_low, and ra high, are not defined independently of

13

Figure 5: Care must be taken to delete points from the active list only when

the current and all subsequent test points can no longer match them. Here,

point a cannot match point t1, but it would be a mistake to delete it, since
the not yet encountered point to matches a.

the particular active point between tested, so we use worst case values in
which o, is replaced by maxo4. That is,

. (sin(za/gy/maxai + Uf)) (mod 360) 12)

cos(dec;)

! (sin(za/wmax"?4 + ot)) (mod 360) (13)

cos(decy)

ra_low; = ra; —sin~

ra_low; = ra; + sin~

3.6.4 A data structure for the active list

The data structure underlying the active list must provide efficient operations
for insertion of sources; deletion of all sources whose declination is less than
a given value; and determination of all sources within a given range of right
ascensions. To achieve this, the data structure maintains its sources in both
ascending order of declination and ascending order of right ascension.

Since sources are inserted into the active list in ascending order of declina-
tion, inserted sources may be simply appended to the end of the declination
ordering. Similarly, deletion of all sources whose declination is less than a

14

given value is achieved by repeatedly deleting sources from the start of the
declination ordering until the first source is greater than or equal to the given
value. Therefore the data structure maintaining the declination ordering is
a queue: it provides efficient operations for appending to the end and delet-
ing from the front, but not for random access to internal sources. We have
implemented this as a doubly-linked list with head and tail pointers.

The requirements for storage in right ascension ordering are somewhat
different. Insertion and deletion of sources is unordered on right ascension,
and so may occur at any location in the ordering. Identification of all sources
in a given range implies location of range boundaries within the ordering, so
that all sources between the range boundaries may be reported. Since we
require random access to any source in the right ascension ordering, we im-
plement this ordering with a binary tree. The necessity of efficiently visiting
every source between two range boundaries implies that the binary tree must
be threaded. Since insertion and deletion of sources is unordered on right
ascension, the binary tree will, on average, remain balanced, so there is no
need for a data structure that actively maintains the tree in a balanced state.
A simple threaded binary tree suffices.

3.6.5 The algorithm

For convenience, we repeat here the algorithm presented in [1].

Given two catalogues A and T, and assuming that A will be passed
through the active list and 7" will provide test sources, the steps of the algo-
rithm are:

1. Preprocess the catalogues A and 7T by sorting them into
ascending order of declination; during preprocessing, keep
track of the maximum errors in each.

2. For each source t in T

- Delete from the active list all members that cannot
match ¢t or any subsequent source from 7', because their
declinations are less than dec_low; as defined in
(11); report as unmatched any deleted member that has
not been matched to a source from 7.

- Add to the active list all sources from A that might
match ¢, because their declinations are less than or
equal to dec_high, as defined in (10);

- Report all pairs (a,t) where a is a member of the
active list whose right ascension falls between

15

ra_low; and ra high,, as defined in (12) and (13)
respectively, and taking into account prime meridian
effects; if nothing is reported, then report ¢
unmatched.

3. Terminate by flushing any remaining members of the active
list, reporting as unmatched any deleted member that has
not been matched to a source from 7.

3.6.6 Refinements for limited-range catalogues

Many of the catalogues that are available or likely to become available in the
VO are not all-sky surveys. Some have quite limited ranges. If we review
our algorithm from the point of view of this use case, we see a number of
inefficiencies that may be eliminated by some minor refinements.

Firstly, in declination intervals covered only by the active catalogue, many
sources from the active catalogue will be added to the active list, only to be
deleted again without ever being the object of a containment test. This adds
substantially to the costs of the algorithm, but it is easily addressed by a
minor change: whenever the next source from the test catalogue is too far
away to be capable of matching the next source from the active catalogue,
the active list is flushed and sources from the active catalogue are discarded
until a source is encountered that is not too far away to match the next test
point. We then add this source to the active list and continue in the usual
way. A special case is when the test catalogue is exhausted: we flush the
active list and discard all remaining sources in the active catalogue.

A similar situation occurs in declination intervals covered only by the test
catalogue. Here, sources may be repeatedly tested against an empty active
list, causing poor performance. Instead, we discard test sources until we
encounter one that causes the next source from the active catalogue to be
added to the active list, and then proceed as usual.

Preliminary empirical results indicate that the first of these refinements
results in a 20% speedup for our example limited-range catalogues, with
the second yielding a further 20% speedup. The result overall is an 36%
speedup in these special cases. Importantly, these changes have no effect on
the performance of the algorithm on all-sky catalogues.

4 Results

In I/O costs, the algorithm is trivially O(N4log N4 + Nrlog Nr) for the
preprocessing stage and O(N4 + Nr) for the matching itself. For processor

16

costs for the matching, the algorithm is O(Nrlog N4) through the access and
maintenance costs of the binary tree. For full empirical results, see [3].

The expected length of the active list is O(N4) and varies with the cosine
of the declination of the current object from B. Assuming a uniform distri-
bution of sources about the celestial sphere, the active list will be largest
when the sweep line is largest; that is, at the equator. This can be estimated
by the number of sources from the active catalogue whose declinations lie

in a strip of width 2\/max0i + maxc?. The area of this strip may be calcu-
lated using surface-of-revolution integration techniques, yielding an area of

47 sin(\/maxafl +maxc?). As a proportion of the total surface area of the
sphere, this area is:

sin(\/ maxo? + maxo?)

and the expected number of objects from A whose nominal locations lie in
this strip is then:

Ny sin(\/maxaf‘ + maxo?)

For a catalogue of 10 objects and with representative values of 1 arcminute
for both maxo 4 and maxor, the active list would have around 580000 elements.
This confirms that the active list can be maintained as a main-memory data
structure for the catalogues of sizes currently available or envisaged.

5 Conclusions

In [1], we reported an algorithm for catalogue matching that is logarith-
mic in both I/O and processor costs and low main-memory requirements,
achieved by applying filter-and-refine and plane sweep concepts from geospa-
tial database and computational geometry. In this technical report, we have
documented the design decisions and implementation details of this algo-
rithm.

References

[1] David J. Abel, Drew Devereux, Robert A. Power, and Peter R. Lamb.
An O(N log M) algorithm for catalogue matching. Technical Report TR~
04/1846, CSIRO ICT Centre, Canberra, Australia, 2004.

[2] R. H. Giiting. An introduction to spatial database systems. VLDB Jour-
nal, 3:357-399, 1994.

17

[3] Robert A. Power and Drew Devereux. Benchmarking catalogue cross
matching. Technical Report TR-04/1848, CSIRO ICT Centre, Canberra,
Australia, 2004.

[4] F. Preparata and M. Shamos. Computational geometry: an introduction.
Springer Verlag, New York, 1985.

18

