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ABSTRACT 
 
The catalogue matching problem is a ubiquitous problem in data fusion in Virtual 
Observatories.  It deals with reporting the locationally coincident pairs of objects in 
two astronomical databases where locations are imprecise.  Our algorithm applies the 
filter-and-refine and plane sweep techniques.  Pre-processing consists of a sort by 
declination, and the active list is a queue indexed by a binary tree.  The algorithm is 
O(NlogM) in both I/O and processor costs and has low-main memory requirements.  
Empirical assessment on matching problems of up to 1.5 billion objects suggests the 
algorithm has performance at least an order of magnitude better than the techniques in 
current use. 
 
 
 

1 INTRODUCTION 
 
One of the central motivations for Virtual Observatories is that integrating data from two 
or more catalogues will provide richer or more extensive data sets that can be explored 
using data mining techniques such as classification to detect new types of bodies or to 
find more instances of rare or unusual types of bodies.  The fundamental data fusion 
operation is to identify the objects appearing in both catalogues on the basis of 
equivalence of their spatial references.  Catalogue matching can be required either to the 
merge of a number of catalogues to form a new catalogue to be used for many purposes 
or as a join within a search spanning a number of catalogues [1].   
 
The operation is inherently costly, because the catalogues of interest are very large and 
the matching operation is intrinsically a join.  The SuperCOSMOS catalogue of over a 
billion bodies is an early representative of the large catalogues now being generated by 
sky surveys [2].  Extrapolation of the solution times reported for smaller data sets 
indicates that the current algorithms with costs that are quadratic with problem size 
would have solution times of days for merging catalogues of this size.  There is clearly 
merit in investigating faster algorithms. 
 



In this paper, we report an algorithm to determine the pairs of objects, drawn from two 
catalogues, that are spatially equivalent.  Often the set of pairs would be subjected to 
further tests of consistency in red shift, their emissions profile and so on.  We assume that 
spatial indexes are not available.  Our algorithm has pre-processing costs of O(NlogN + 
MlogM) where N and M are the number of objects in the input catalogues.  The matching 
operation proper has I/O costs of O(N + M) and processor costs of O(NlogM).   
 
We begin by formally describing the problem and then present our algorithm as based on 
the filter-and-refine strategy and on plane-sweep concepts.  An empirical assessment of 
the algorithm shows that, with modest computing equipment, matching of catalogues of a 
billion objects can be performed in under 6 hours.  We relate our algorithm to previous 
work in astronomy and other areas, and conclude with an analysis of the scope of 
applicability of our algorithm. 
 
 
2 The Catalogue Matching Problem 
 
There are many possible variants of the catalogue matching problem due to differences in 
the precise methodologies applied.  We consider here only the spatial filter step of 
catalogue matching.  This determines pairs of objects whose locations are essentially 
coincident.  The object pairs from the spatial filter step would then be subjected to 
validation tests that check consistency of the other attributes of each pair of objects. To 
address the problem as generally as possible, and to establish some terminology, we 
begin with a formal statement of a core form of the problem. 
 
We are given two catalogues B and C that have N and M objects (bodies) respectively.  
Each record (tuple) in B and C has a unique object identifier.  The spatial location of an 
object is a normally distributed random variable described by a mean location in right 
ascension and declination coordinates, and a representation of variance.  More fully, the 
location of an object is described by an ellipsoid of arbitrary orientation, which in turn 
can be represented by the orientation of its major axis and the lengths of its major and 
minor axes.  The ellipsoid represents the area within which the object falls within a 95% 
confidence level.  The lengths of the major and minor axes then are the standard 
deviations for the imprecision of the location within the local coordinate system of the 
ellipse.  For simplicity of presentation, we will present our algorithm in terms of circles 
rather than ellipsoids.  The modifications to deal with ellipsoids are straightforward, but 
lead to longer expessions.  We will allow, however, the standard errors to vary between 
objects in a catalogue.  That is, we have two catalogues B and C defined as  
 

B : { b[oid, ra, dec, ]}  
C : { c[oid, ra, dec, ]}  

 
Note the use of standard notation so that b[ra], for example, refers to the attribute ra for 
an object instance from B. 
 



Two objects will be accepted as spatially equivalent if the angular distance between them 
is less than a threshold expressed in terms of their standard errors.  We can represent this 
test generally by a function that calculates the angular separation of a pair of objects, 
relates the separation to the standard errors for the two objects and returns a Boolean 
value if the separation is less than some specified threshold p.  We denote this function 
by 

t (b[ra], b[dec], b[ ], c[ra], c[dec], c[ ], p )  bool 
  
The catalogue matching problem then is to form the sets D (the pairs of objects from B 
and C that are accepted as matches), E (the objects in B that are not in D) and F (the 
objects in C that are not in D).  That is, 
 
D = { d: (b,c)} | t (b[ra], b[dec], b[ ], c[ra], c[dec], c[ ], p)  TRUE for all b , c}  
 
E = { b | t (b[ra], b[dec], b[ ], c[ra], c[dec], c[ ], p)  FALSE for all b}  
 
F = { c | t (c[ra], b[dec], b[ ], c[ra], c[dec], c[ ], p)  FALSE for all c}  
 
We assume that the source catalogues are presented in no known sequence, that there are 
no pre-existing indexes on the catalogues, and that the catalogues are too large to be held 
in main memory.  We also assume that the catalogues have previously been standardised 
in their coordinate systems and epoch. 
 
 
3 ALGORITHM OUTLINE 
 
The design of the algorithm applies two concepts.  The first is to use the well-known 
filter-and-refine strategy of geospatial database.  The second is to apply a variation of the 
plane sweep algorithm to identify pairs of points that are near-neighbours. 
 
Filter and Refine 
 
Filter-and-refine strategies [3] have two steps.  In the filter step, a weakened form of the 
problem is solved to generate rapidly a set of candidates, typically aiming to minimise 
I/O costs.  The candidates are guaranteed to include all pairs of objects (hits) satisfying 
the criteria of the full form of the problem but can also include some objects (false drops) 
not satisfying the full criteria.  In the refinement step, the candidates are tested as 
satisfying the full constraints of the problem.  Choice of the weakened form then strikes a 
balance between the costs of generation of a set of candidates and the costs of diagnosing 
the false drops. 
 
The full form of the problem is to report all pairs of objects whose angular separation is 
less than a threshold expressed in terms of the standard errors of the two points and a 
required confidence level z: 
 

cos-1(sin(b[dec])sin(c[dec])+cos(b[dec])cos(c[dec])cos(b[ra]–c[ra]) ) z(b[ ]2 + c[ ]2)½ 



(This expression for the angular separation in fact leads to high inaccuracies for low 
declinations, and the equivalent Haversine formula is preferable.  For further details, see 
[6].) 
 
This full form can be rephrased as the problem of reporting all pairs of objects such that 
one of the objects is contained within a circle of radius z(b[ ]2 + c[ ]2)½ centred on the 
other object.   Our weakened form of the problem is to report all pairs of objects such that 
one of the objects is contained within the bounding box of the other object’ s circle.  The 
bounding box is defined by the limits of the circle in right ascension and declination. 
 
Taking into account the necessary correction to right ascension values for declination 
effects, the accepted candidate pairs are the pairs (b, c) such that 
 
| b[ra] – c[ra] |  sin-1(sin(z(b[ ]2 + c[ ]2)½) / cos(b[dec]))    (1) 
 

and  
 
| b[dec] – c[dec] |  z(b[ ]2 + c[ ]2)½       (2) 
 
 
Evaluating the Candidates 
 
The algorithm to identify candidate pairs follows the basic concepts of the plane sweep 
algorithm [4] by structuring processing around a regular set of events.  The event in this 
case is a search for the objects from C that match a specific object b from B.  The set of 
events is made regular by processing the objects from B in ascending sequence by 
declination.  (We will note later the significance of sweeping by declination rather than 
right ascension.)  To ensure that the search within each event is executed efficiently, we 
maintain an active list of the objects from C that might match the current object from B 
or further objects from B, within a maintenance policy that restricts the size of the active 
list to be available when dealing with any member of B.  As we will see, this can be 
handled by a sequential traversal of C. 
 
The algorithm, in outline, is: 
 

1 Pre-process the catalogues B and C, by sorting them into ascending sequence by 
declination; 

2 For each object from B, 
a. Delete from the active list any members that cannot match the current 

member of B or any further members of B, on the basis of  declination; 
b. Insert into the active list any members of C that might match the current 

object from B on the basis of declination; 
c. Search within the active list for matches against b; 

3 Terminate, by flushing any remaining members of the active list. 
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Maintenance of the active list must ensure that it contains all members of C that satisfy 
the declination constraint on matching (2) for the current object from B.  That is, the 
insertion discipline must ensure that it contains all members of C such that 
 

b[dec] – z(b[ ]2 + c[ ]2)½  c[dec]  b[dec] + z(b[ ]2 + c[ ]2)½   
 
The deletion discipline restricts the size of the active list by dropping any members that 
can no longer match a member of B.  A naïve approach would be to delete any members 
for which 
 

c[dec] < b[dec] – z(b[ ]2 + c[ ]2)½ 

 
However, because the imprecisions are not uniform, there could be a member b' of B still 
to be encountered for which 
  

b'[dec] – z(b'[ ]2 + c[ ]2)½ < b[dec] – z(b[ ]2 + c[ ]2)½ 
 
We therefore modify our membership of the active list to be 
 

b[dec] – z(max(b[ ])2 + max(c[ ]2))½ < c[dec] < b[dec] + z(b[ ]2 + max(c[ ]2))½  
 
The search of the active list in Step 2c is a range search on right ascension, to find those 
members of the active list that also satisfy Constraint (1).  We require the range to cover 
all members of the active list such that 

 
b[ra] – z( 'b

2 + 'c
2)½ < c[ra] < b[ra] + z( 'b

2+ 'c
2)½ 

 
where 
 

'b = sin-1(sin(b[ ])/cos(b[dec]))  
'c =  sin

-1(sin(c[ ])/cos(c[dec])) 
 
 
The Data Structure for the Active List 
 
As deletion and insertion both occur in ascending order by declination, the active list can 
be implemented as a FIFO (first in, first out) queue with head and tail pointers.  To 
support access by a lower bound on right ascension and traversal to the upper bound, a 
threaded binary tree on right ascension is used.  The specific actions are to identify the 
active list member with the largest right ascension less than the lower bound of the range 
and then traverse the tree to the upper bound.   
 
Analysis of the expected size of the active list shows that it is small and can be held in a 
main-memory data structure.  The expected length of the active list is O(M) and varies 
with the cosine of the declination of the current object from B.  Assuming a uniform 
distribution of sources about the celestial sphere, the active list will be largest when the 



sweep line is largest; that is, at the equator.  This can be estimated by the number of 
sources from the active catalogue whose declinations lie in a strip of width 2 *  (max(b[ ] 
+ max(c[ ]) / 60 (assuming that b[ ] and c[ ] values are expressed in arcminutes).  The 
area of this strip may be calculated as 4  sin( ), where  = (max(b[ ]) + max(c[ ])/60.  
As a proportion of the total surface area of the sphere, this area is: 
 

sin((max(b[ ]) + max(c[ ]))/60) 
 

and the expected number of objects from C whose nominal locations lie in this strip is 
then: 
 

M sin((max(b[ ]) + max(c[ ]))/60) 
 

For a catalogue of 109 objects and with representative values of 1 arcminute for both 
max(b[ ]) and max(c[ ]), the active list would have around 580000 elements.  Allowing 
eight bytes for each of the record fields and four bytes for each of the list pointers, we 
calculate the space required for storage of the list at about 20Mb, with the binary tree 
index requiring les than 7 Mb.  The requirement for 27Mb of main memory is fairly 
moderate in the context of current systems; this confirms that the active list can be 
maintained as a main-memory data structure for the catalogues of sizes currently 
available or envisaged. 
 
Sweeping by declination is more efficient than sweeping by right ascension.  In terms of 
our algorithm, sweeping by right ascension, starting at ra = 0 (for example), would 
require holding in the active list the objects that could match objects on the other side of 
the line ra = 0.  This would include the objects with small right ascensions and with 
declinations placing the objects near a pole and so with ellipses with large ranges in right 
ascension. 
 
 
4 Analysis of Performance 
 
In I/O costs, the algorithm is trivially O(NlogN + MlogM) for the preprocessing stage 
and O(N+M) for the matching itself.  For processor costs for the matching, the algorithm 
is O(NlogM) through the access and maintenance costs of the binary tree. 
 
To perform empirical performance assessment, the algorithm has been implemented in a 
form notionally aimed at cases where matching is to be performed essentially as a 
standalone operation, i.e. the input catalogues are in their distribution forms, and they are 
not required at the completion of the matching operation.  We measured the costs of both 
the preprocessing and the matching operation proper.   
 
To allow a clear assessment of the effects of catalogue size in terms of number of objects, 
during the pre-processing for performance evaluation, we stripped attributes other than 
the object id, declination, right ascension and imprecisions.  Our pre-processing program 
performs a main-memory sort, creates a binary file and determines the greatest 



imprecision of any object in the catalogue.   The program is customized to the format of 
the distribution files.  
 
For the tests reported below, the pre-processing and catalogue matching programs were 
implemented using g++ under Debian Linux 2.4.20 and run on a Dual Pentium Xeon 
2Ghz processor with 2 Gbytes of main memory.  The disk was 5 RAID5 storage arrays 
with 10K RPM UltraSCSI disks with a maximum transfer rate between the RAIDs to the 
server of 80 Mb/s.  For further details see [5]. 
 
Performance was assessed by pairwise matching of 6 catalogues and by matching each 
catalogue with itself.  Summary information on these catalogues is given in Table 1.  The 
smaller catalogues, 1XMM, SUMSS, Tycho2, are distributed as a single text file. The 
USNO catalogues are distributed as a set of files that are disjoint by declination.  It is 
then only necessary to sort each file by declination.  The catalogue matching program 
reads the set of files in sequence.  2MASS is also partitioned, but the partitioning creates 
files of equal size, with the exception of the last, and adjacent partitions overlap in their 
declination ranges.  We resolve this by sorting each file by declination during 
preprocessing, and reading from two files during the cross matching, selecting the lower 
(by declination) record for action.   
 
Preprocessing costs are given in Table 2 and the costs of matching in Table 3.  Table 3 
shows solution times for (as an example) adopting Tycho2 as the catalogue to be passed 
through the active list in a match against 2MASS and for adopting 2MASS as the 
catalogue to be passed through the active list.  The rows of the table show the catalogue 
passed through the active list.  For example, matching Tycho2 against 2MASS with 
Tycho2 passing through the active list has a solution cost of 14 minutes. 
 
 

Table 1 
Test Catalogues 

 
Catalogue N records Max 

Imprecision 
(Degrees) 

1XMM [7] 56,711 0.015615 
SUMSS [8] 134,870 0.006167 
Tycho2 [9] 2,539,913 0.000051 
2MASS [10] 470,992,970 0.000336 
USNO A2 [11] 526,280,881 0.000056 
USNO B1 [11] 1,045,175,762 0.000278 

 
 



Table2 
Pre-processing Costs 
Times given as mm:ss 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 
Matching costs as elapsed time.  Times given as mm:ss. 

 
 1XMM SUMSS Tycho2 2MASS USNO A2 USNO B1 
1XMM 0:01 0:01 0:04 13:55 14:59 30:51 
SUMSS 0:01 0:01 0:03 8:36 10:02 19:06 
Tycho2 0:04 0:03 0:07 14:31 16:02 32:36 
2MASS 67:13 33:03 49:38 92:21 90:43 148:41 
USNO A2 63:13 36:15 24:23 81:39 47:17 136:14 
USNO B1 252:16 108:25 199:31 238:43 200:13 281:29 
 
 
 
 
 

Table 4 
Maximum Lengths of Active List 

 
 1XMM SUMSS Tycho2 2MASS USNO A2 USNO B1 
1XMM 342 305 299 300 300 300 
SUMSS 221 164 137 137 137 137 
Tycho2 1206 476 19 41 21 46 
2MASS 226766 108385 7429 9602 7485 9494 
USNO A2 308395 136247 2037 8516 2339 7922 
USNO B1 468456 252001 14363 20683 14492 20012 
 
 
 

Times Catalogue 
elapsed cpu 

1XMM 0:02 0:01 
SUMSS 0:02 0:03 
Tycho2 0:34 0:33 
2MASS 106:00 95:00 
USNO A2 45:00 43:00 
USNO B1 95:00 80:00 



5 Related Work 
 
Reported algorithms for the catalogue matching problem have been based on exhaustive 
enumeration and by index-based joins.  Exhaustive enumeration (the comparison of all 
possible pairs of objects) has been reported, for example by Malik et al [13] as the basis 
for the XMATCH operation in SkyQuery.  This approach is clearly O(NM) in processor 
performance and O(N+M) in I/O if the catalogues can be held in main memory.  The 
approach can be readily parallelised by binning or zoning to restrict pair-wise 
comparisons by subregions [13,17]. 
 
Index-based joins have been reported by Kunzst [12], Page [14] and Kalpakis et al [15].  
Kunzst et al suggest a nested loops strategy.  For each object in one of the catalogues, a 
search is made, using an index on HTM keys, for objects with keys corresponding to the 
same HTM cell or neighbouring cells.  Page has performed performance evaluations of 
matches based on one-dimensional keys such as HTM and HEALPix [16,18] and with R-
trees.  The preprocessing times to load data and generate the R-tree indexes for two data 
sets of 5M objects (2MASS) and 3.6M objects (a subset of USNO B1) were 617 seconds 
and 442 seconds respectively.  The match operation itself was 283 seconds. 
 
The catalogue matching problem is closely similar to the neighbour-finding problem 
posed by Gray et al [17].  This deals with finding all pairs of objects, from a single 
catalogues that are within a specified distance of each other.  Gray reports an approach 
using exhaustive enumeration with zoning with a performance of 2800 objects per second 
on a test problem of 154000 objects.  The neighbour-finding problem is present in the 
Computational Geometry literature as the fixed-radius all neighbours problem.  Optimal 
algorithms with O(NlogN + k) performance, where k is the number of pairs found, have 
been reported applying techniques with high pre-processing costs to generate a degraded- 
 grid [18] or a Voronoi tessellation. [19,20].  

 
Any comparison of performance data must be tentative.  The data for other algorithms is 
typically for a single problem only, and the implementation environments differ widely.  
Comparison of the performance reported here and those of the methods of Gray et al and 
of Page for problems of comparable size indicates that our algorithm is faster by at least 
an order of magnitude for moderate-sized problems, and consideration of the orders of 
complexity suggests that the advantage would be higher for large problems.  However, it 
is unclear if implementation within a database management system kernel is 
advantageous or disadvantageous in terms of raw performance.  Certainly there are 
collateral benefits in a database implementation in the database system’s ability to 
optimise complex operations involving a join and a selection (for example).  
 
 
 6.  Conclusions 
 

We have reported an algorithm for catalogue matching that is logarithmic in both I/O and 
processor costs and low main-memory requirements, achieved by applying filter-and-
refine and plane sweep concepts from geospatial database and computational geometry.  
Empirical performance assessment shows solution times of around 6 hours elapsed to 



match two catalogues, one of a billion objects, the other half a billion.   This appears to 
be a significant improvement over current algorithms.   
 
This performance tends to confirm the feasibility of some key operations for Virtual 
Observatories.  It suggests that, within current computing technology, it is readily 
possible to integrate very large catalogues.  The logarithmic performance and the low 
main-memory requirements of our algorithm indicate a capacity to handle catalogues 
much larger than those used in the tests.  The performance also has ramifications for 
searches across a Virtual Observatory for objects with certain characteristics as provided 
by, for example, SkyQuery.  The assessments show that join operations of the sizes likely 
to be present in matching a set of candidates developed in prior steps with a catalogue can 
be performed in 10 seconds or less.  This makes it feasible to perform searches on all of 
the sky through queries joining multiple databases to integrate, for example, data across 
the electromagnetic spectrum. 
 
There are opportunities for further development of the algorithm.  Because the algorithm 
is processor-bound, parallelisation using the zoning approach of Gray et al [17] is likely 
to reduce solution times significantly.  The algorithm is also structured around a full 
serial scan of the catalogues, and this is inefficient where the sizes of the data sets are 
significantly different.  A case in point is within search across multiple databases where 
the list of candidates could be small compared to a catalogue. 
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