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Multi-sensor multi-target tracking techniques
for Space Situational Awareness

Motivation: Methods for tracking space debris are essential to prevent
damage to expensive space-related infrastructure and to determine cause.

Examples of recent events:
+» 2009 Russian Kosmos 2251/US Iridium 33 collision.
+» 2007 Chinese anti-satellite test.

https://en.wikipedia.org/wiki/
2007_Chinese_anti-
satellite_missile_test

https://en.wikipedia.org/wiki/
2009 _satellite_collision

Objective: Develop methods for estimation of populations of objects in orbit
from sensor data.



Multi-sensor multi-target tracking techniques
for Space Situational Awareness

Topics:
1. Tracking trajectories of individual objects

2. Modelling and estimating multiple objects

3. Joint sensor motion, target tracking, and classification




TARGET TRACKING: PREDICTION
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TARGET TRACKING: UPDATE
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TARGET TRACKING: ORBITING OBJECTS
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TRACKING A SATELLITE FROM LASER RANGING
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TRACKING FROM WEATHER RADAR

Chilbolton Advanced Meteorological Radar

@ Fully steerable meteorological 3Ghz radar
with a Doppler capability

@ Modified in 2010 to carry out Space
Situational Awareness (SSA) operations

@ Low Earth Orbit (LEO) object tracking

Image Credit:
http://www.metoffice.gov.uk/

Andrey Pak (VIBOT) CAMRa Data Processing July 17, 2015 2/4




MULTI-OBJECT FILTERING
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TRACKING MULTIPLE ORBITING OBJECTS
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Multi-object modelling
SSA context: eg. debris modelling

A spatial point process is a
probabilistic representation of a
random set of objects

For example:

- 2-dimensional positions of
objects in an image from a
sensor (i.e. an observation space)

- 3-dimensional positions and
velocities of objects in

some real-world environment
(i.e. a state space).
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Point processes

Number of objects

Cardinality probability

Joint spatial density
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Representation: The probability generating functional (p.g.fl.)
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THE GENERAL THEORY OF STOCHASTIC POPULATION
PROCESSES

J. E. MOYAL
Australion Narlensl University, Canberra, Awstralia ()




Point process modelling — Poisson clusters

Ge,(h) = Gs, (Ga,(h[))

Composition of Poisson processes:
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Application - tracking groups

SSA context: eg. tracking debris clouds
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TRACKING FROM TELESCOPE DATA




HERIOT 1. BACKGROUND
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JOINT SENSOR DRIFT AND OBJECT ESTIMATION

» To detect and track observed objects
» To classify objects in the scene (eg. stars vs satellites)

» To estimate and compensate for telescope drift




HERIOT 1. BACKGROUND
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TELESCOPE DRIFT

» Mechanical
imperfections of the
mount

» Diurnal motion of the
stars (in case of the
static mount)

» Basic jitter due to the
wind or unstable
earth
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» Image registration!®?]
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Joint Estimation of Telescope Drift and Tracking



SENSOR STATE ESTIMATION

» Joint sensor estimation and multi-target tracking!'®l:

» Parent process

- telescope motion

» Daughter process - objects moftion

» Particle filter for sequential estimation of telescope position

Every particle is a
hypothesis of a
telescope position with
linked multi-target
estimation and weight

Sensor state space
Particle filtering

Multi-object state space
(PHD filter)
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SENSOR STATE ESTIMATION

» Joint sensor estimation and multi-target tracking:
» Parent process - telescope motion
» Daughter process - objects moftion

» Particle filter for sequential estimation of telescope position

Every particle is a Sensor state space
hypothesis of a Particle filtering
telescope position with
linked multi-target
estimation and weight

IR Y YR Multi-object state space
/ T ): K \ FANNY ! % .

» Weight is assigned ) . . (PHD filter)

to the particles

according to the

likelihood of the

observations, given

sensor state

estimate.

Observation state space
' Image detections



SENSOR STATE ESTIMATION

» Every particle corresponds 1o:
» Sensor state estimate (relafive position of the telescope)
» Multi-target state for objects (linear motion model)

» Multi-target state for stars (static)

P X, VilZy:1) = pXilZy: 1, Vi) P (Vi | 5)

L} L}

Multi-target filter ~ Particle filter



REAL DATA RESULTS

(NEO 2007HA during its close passage fo the Earth).
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Joint estimation of telescope drift and object tracking
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Multi-sensor multi-target tracking techniques
for Space Situational Awareness

1. Tracking trajectories of individual objects

2. Multi-target tracking

3. Joint sensor motion, target tracking, and classification

Future objectives:

- Orbit estimation and MTT from Fylingdales --- Thule, Beale, ..?
- Sensor scheduling and control
- Sensor calibration




