

Daniel Clark

Reader, School of Engineering and Physical Sciences Heriot-Watt University

Motivation: Methods for tracking space debris are essential to prevent damage to expensive space-related infrastructure and to determine cause.

Examples of recent events:

- ✤ 2009 Russian Kosmos 2251/US Iridium 33 collision.
- ✤ 2007 Chinese anti-satellite test.

Objective: Develop methods for estimation of populations of objects in orbit from sensor data.

Topics:

- 1. Tracking trajectories of individual objects
- 2. Modelling and estimating multiple objects
- 3. Joint sensor motion, target tracking, and classification

TARGET TRACKING: PREDICTION

Markov transition density

$$p_{k+1|k}(x_{k+1}|z_{1:k}) = \int f_{k+1|k}(x_{k+1}|x)p_k(x|z_{1:k})dx$$

TARGET TRACKING: UPDATE

Conditional likelihood

$$p_{k+1}(x_{k+1} | z_{1:k}) = \frac{g_{k+1}(z_{k+1} | x_{k+1})p_{k+1|k}(x_{k+1} | z_{1:k})}{\int g_{k+1}(z_{k+1} | x)p_{k+1|k}(x | z_{1:k})dx}$$

TARGET TRACKING: ORBITING OBJECTS

TRACKING A SATELLITE FROM LASER RANGING

TRACKING FROM WEATHER RADAR

Chilbolton Advanced Meteorological Radar

- Fully steerable meteorological 3Ghz radar with a Doppler capability
- Modified in 2010 to carry out Space Situational Awareness (SSA) operations
- Low Earth Orbit (LEO) object tracking

Image Credit: http://www.metoffice.gov.uk/

MULTI-OBJECT FILTERING

multi-object Bayes filter

TRACKING MULTIPLE ORBITING OBJECTS

Multi-object modelling SSA context: eg. debris modelling

A **spatial point process** is a probabilistic representation of a random set of objects For example:

- 2-dimensional positions of objects in an image from a sensor (i.e. an observation space)

- 3-dimensional positions and velocities of objects in some real-world environment (i.e. a state space).

Point processes

Number of objects	Cardinality probability	Joint spatial density
0	$\alpha(0)$	
0	p(0)	-
1	ho(1)	$p_1(x_1)$
2	$\rho(2)$	$p_2(x_1, x_2)$
3	ρ(3)	$p_3(x_1, x_2, x_3)$
4	$\rho(4)$	$p_2(x_1, x_2, x_3, x_4)$
n	$\rho(n)$	$p_n(x_1, x_2, x_3, x_4, \ldots, x_n)$

Representation: The probability generating functional (p.g.fl.)

$$G_{\phi}(v) = J_{\phi}^{(0)} + \sum_{n \ge 1} \frac{1}{n!} \int v(x_1) \dots v(x_n) J_{\phi}^{(n)} (\mathbf{d}(x_1, \dots, x_n))$$

THE GENERAL THEORY OF STOCHASTIC POPULATION PROCESSES BY J. E. MOYAL

Australian National University, Canberra, Australia (1)

Point process modelling – Poisson clusters

 $G_{\Phi_{\mathrm{d}}}(h) = G_{\Phi_{\mathrm{p}}}\left(G_{\Phi_{\mathrm{e}}}(h|\cdot)
ight)$

Composition of Poisson processes:

Application - tracking groups SSA context: eg. tracking debris clouds

TRACKING FROM TELESCOPE DATA

JOINT SENSOR DRIFT AND OBJECT ESTIMATION

► To *detect* and *track* observed objects

HERIOT

- ► To *classify* objects in the scene (eg. stars vs satellites)
- ► To estimate and compensate for telescope drift

1. BACKGROUND

TELESCOPE DRIFT

- Mechanical imperfections of the mount
- Diurnal motion of the stars (in case of the static mount)
- Basic jitter due to the wind or unstable earth

CURRENT SOLUTIONS

HERIOT WATT UNIVERSITY

SENSOR STATE ESTIMATION

- ► Joint sensor estimation and multi-target tracking^[18]:
 - Parent process telescope motion
 - Daughter process objects motion
- Particle filter for sequential estimation of telescope position

SENSOR STATE ESTIMATION

- Joint sensor estimation and multi-target tracking:
 - Parent process telescope motion
 - Daughter process objects motion
- Particle filter for sequential estimation of telescope position

SENSOR STATE ESTIMATION

- Every particle corresponds to:
 - Sensor state estimate (relative position of the telescope)
 - Multi-target state for objects (linear motion model)
 - Multi-target state for stars (static)

$$p(\mathbf{X}_k, \mathbf{y}_k | \mathbf{Z}_{1:k}) = p(\mathbf{X}_k | \mathbf{Z}_{1:k}, \mathbf{y}_k) p(\mathbf{y}_k | \mathbf{Z}_{1:k})$$

$$\uparrow \qquad \uparrow$$
Multi-target filter Particle filter

REAL DATA RESULTS

(NEO 2007HA during its close passage to the Earth).

Joint estimation of telescope drift and object tracking

NEO 2007HA during its close passage

- 1. Tracking trajectories of individual objects
- 2. Multi-target tracking
- 3. Joint sensor motion, target tracking, and classification

Future objectives:

- Orbit estimation and MTT from Fylingdales --- Thule, Beale, ..?
- Sensor scheduling and control
- Sensor calibration

