HEASOFT Developer’s Guide

Version 1.3

HEASARC
Code 662
Goddard Space Flight Center
Greenbelt, MD 20771
USA

June 2018

Contents

1 Introduction

1.1 Configuration Management and HEASOFT Setup
1.2 Input and Output e

1.2.1 Input e e e

1.2.2 Output e
1.3 General Notes
1.4 Task Name and Version Number
1.5 CALDB Access o o i e
1.6 Scripting

2 Overview of HEASOFT Libraries
2.1 attitudeo
2.2 heainit oL
2.3 healo
2.4 heautils L
2.5 heasp e
2.5.1 PHAfiles e
2.5.2 RMF files o e
253 ARF . . . e
2.5.4 Utility routines

3 HEADAS Makefiles
3.1 Introduction e
3.2 A simple Makefile to add a new task to an existing package component

3.3 Standard MacroS

10
10
11
12
15
15
16
17
18

CONTENTS 1

3.3.1 Macros Pertaining To All Build Actions 21

3.3.2 Macros Pertaining To Tasks o, 22

3.3.3 Macros Pertaining To Libraries 23

3.3.4 Macros Pertaining To Installation, 23

3.3.5 Macros Pertaining To Subdirectories, 25

4 HEADAS Error Handling Facility 27
4.1 Introduction 27

4.2 HEADAS Error Handling APT 28

CONTENTS

Chapter 1

Introduction

HEASOFT is the HEASARC’s software suite that currently encompasses both new and legacy
mission-independent or multi-mission FTOOLS, the XANADU suite (XSPEC, XRONOS, and XIM-

AGE), XSTAR, and numerous mission-specific packages.

HEASOFT uses the HEADAS build environment (described in more detail below), and is composed
of two basic parts: a set of mission- independent (HEATOOLS, HEASPTOOLS, et al.) and multi-
mission (HEAGEN, ATTITUDE, et al.) FITS utilities which are developed and maintained within
the HEASARC, as well as a set of mission-specific packages developed and maintained (in whole
or in part) by outside groups. The core modern HEASARC utilities are generally written in ANSI
C for maximum portability. Missions are, however, free to use any language they wish within their
own package, bearing in mind that certain choices may limit the platforms and/or compilers on
which their tasks will build and run.

Many of the older, legacy FTOOLS now have newer, improved analogs in HEASOFT, e.g. in the
HEATOOLS or HEASPTOOLS packages, and all users and developers are encouraged to migrate
their applications to use these new tasks instead. For the forseeable future many mission-specific
tasks (predominantly Perl scripts) may call legacy FTOOLS tasks. HEASOFT distributions will
generally include all necessary components in a single tar file to simplify installation. However, to
support a modular approach, it is important that mission-specific tasks not link against the older
FTOOLS libraries (e.g., xanlib). Developers of mission-specific software that require those older
libraries should coordinate with the HEASARC programming staff to migrate to a newer library.

1.1 Configuration Management and HEASOFT Setup

Configuration management of HEASOFT is handled by the HEASARC, including Makefiles and
configure scripts. Code revision control is handled via a central Git repository resident on HEASARC
servers. Currently, only developers with NASA /GSFC credentials may access this server.

The directory structure for any given software package is reasonably flexible, so that mission soft-
ware developers can generally use a directory structure which best suits their own needs and/or
preferences. Certain constraints may, however, be required to accommodate the overall HEADAS

3

http://heasarc.gsfc.nasa.gov/docs/software/lheasoft

4 CHAPTER 1. INTRODUCTION

build paradigm.

Full, top-down builds are started from the heasoft/BUILD DIR/ directory, using the typical GNU-
based steps of

% ./configure
% make
% make install

Internally, however, builds will be managed by the HEASARC’s hmake utility, which is included
with each HEASOFT distribution. The hmake utility is designed to make it easy to build all or
part of the distribution on any supported platform, without having to manually make modifications
to specify the location and names of necessary flags and libraries. Before using hmake, the user
needs to initialize HEASOFT by sourcing the file $HEADAS/BUILD_DIR/headas-init.csh (or .sh),
where $HEADAS is the environment variable which points to the location of the relevant HEASOFT
installation, e.g. /usr/local/heasoft/x86_64-pc-linux-gnu-1ibc2.12.

1.2 Input and Output

1.2.1 Input

All input to HEASOFT tasks is controlled by a parameter interface library (APE) which is devel-
oped and maintained by the HEASARC. This interface was originally based on the INTEGRAL
Science Data Center’s “PIL” (Parameter Interface Library) code. APE has a very similar look and
feel to the older XPI interface (the original parameter interface used in FTOOLS), but includes ad-
ditional useful features such as enumerated values, minimum-maximum range checking, the ability
to use environment variables in parameters and a dedicated “filename” type. APE is callable by
C, C++, Fortran and Perl tasks.

There are three commonly-used parameters which are handled intrinsically by the internal HEA-
SOFT initialization routines, and thus developers do not need to explicitly read them at the indi-
vidual task level. (A fourth parameter, mode, is an APE internal and operates exactly as in XPI).
The standard HEASOFT parameters are:

e CHATTER (type: integer) The chatter parameter may be used to control the verbosity of a
HEASOFT task. (This is similar to the verbose parameter used e.g. in the Chandra X-ray
Observatory CIAO software, however, since a number of FTOOLS tasks use chatter, we
have chosen to keep the same name for consistency across the HEASOFT suite.) Developers
are free to specify any range (via the parameter min/max) but we recommend the following
(0-5):

0 suppresses all but absolutely essential output

1-4 normal levels. The different levels can be used on a task by task basis to control the
amount of output information. The distinction between the different chatter levels (if any)
must be documented in the task’s help file. For many tasks, all 4 chatter levels might produce
exactly the same output.

1.2. INPUT AND OUTPUT)

5 debug mode: prints detailed messages about each step in the program

The desired chatter value will be specified by the user at runtime and read automatically
during the task initialization phase. The task developer may then funnel diagnostic output
through the supplied routines (see the section 1.2.2 below) which take as their first argument
a threshold chatter level, below which the output will be suppressed. A chatter parameter
is not required for any task, however, calling headas_chat () /hdchat () in a task having no
chatter parameter will result in an error.

e CLOBBER (type: Boolean)

The clobber parameter is used to allow a software task to overwrite previous output. If
used by a task, clobber will be read during the task initialization phase. Developers may
then call headas_clobberfile (filename) which will delete the specified file if it exists and
if the clobber parameter = “yes” (case insensitive) (or is followed by “+7”, i.e. clobber+).
Note that any output FITS file whose name starts with a “!” will be overwritten even if
clobber = no (since CFITSIO will overwrite any file which begins with the “!” character).

e HISTORY (type: Boolean)

The history parameter controls whether or not the user wishes to allow a set of HISTORY
keywords listing the runtime values of all task parameters to be written into any FITS file
header. The developer simply calls HDpar_stamp() specifying the desired FITS file and
extension and, if the history parameter value at runtime permits it, the HISTORY block will
be written. If the task has no history parameter then a call to HDpar_stamp() will return
an error. Kach HISTORY keyword block will be clearly delimited and will include the task
name/version and a timestamp. Use of HDpar_stamp () is not required, but is recommended.

1.2.2 Output

Diagnostic output and other text messages must be able to be separated from the standard output
stream to enable, e.g., piping FITS files between tasks. Developers should never write directly to
stdout but should instead funnel screen output through the dedicated HEADAS streams. These
dedicated streams are set up during task initialization and are controlled by environment variables.
Task developers should never have to read or otherwise deal with these variables. The following
methods for diagnostic output are currently available to developers writing tasks in C:

headas_printf (char *, ...)
Operates exactly like the stdio version of printf but the stream will be directed to the location
specified by the environment variable HEADASOUTPUT (if present).

headas_chat(int, char *, ...)

Identical to headas_printf() except for an additional integer argument which specifies the threshold
“chatter” level below which the message will be suppressed (depending on the runtime value of the
chatter parameter, see discussion of ”chatter” above).

fprintf (heaout, char *, ...)
The heaout stream (which replaces stdout in HEADAS) may be written to directly, as shown.

6 CHAPTER 1. INTRODUCTION

printf (char *, ...)
The usual stdio printf () routine can still be used but will be dynamically replaced by headas_printf ()
during compilation.

Fortran tasks should use the dedicated routines hdecho() and hdchat(). The former is exactly
equivalent to the fcecho() routine in the FTOOLS package while the latter adds the chatter
threshold argument as in headas_chat () above. Note that unlike the C versions above, formatting
of the output strings must be done prior to calling hdecho () /hdchat (), e.g. via an internal write.

Future GUI development and/or other enhancements to HEASOFT will likely require that the
standard error stream and parameter prompts be monitored and/or redirected as well. The en-
vironment variables HEADASERROR and HEADASPROMPT, respectively, control these but developers
should not need to deal with them directly. C tasks may simply use fprintf (stderr, ...) to
print error messages as usual, while Fortran tasks should use hderr() (which is exactly like the
old FTOOLS fcerr () routine). As with hdecho (), the output error message must be constructed
internally prior to calling hderr ().

1.3 General Notes

All tasks should:

e Follow ANSI standards for maximum portability.
e Be written as a subprogram (not a main) which returns an integer status value.

e (For C only) Contain the following block of code near the top of the task subroutine:

#include "fitsio.h" /* assuming CFITSIO routines will be called */
#include "pil.h" /* assuming PIL routines will be called */
#include "headas.h"

#define TOOLSUB my_task_subroutine_name /* use actual subroutine name here */
#include "headas_main.c"

e Check return status after all CFITSIO and APE calls and use the relevant error reporting
routine if status is non-zero.

o Register a task name and version number (see below).

1.4 Task Name and Version Number

Every HEADAS task should register its name and version number so that the information is
available to other routines which may need it. A set of routines in the heautils library (see
headas_toolname.c in the library inventory section, below) has been provided for this purpose.
Each task should call set_toolname() and set_toolversion() to record the information and

1.5. CALDB ACCESS 7

developers may retrieve the information via get_toolname()/get_toolversion() or by the sim-
pler get_toolnamev() which returns both in a single string with name and version joined with
an underscore. The Fortran equivalents are hdnameset (), hdverset (), hdnameget (), hdverget ()
and hdnamevget (). Note that a default name is recorded during task initialization based on the
executable name. A default version number of 70.0” will likewise be used. These defaults will be
superceded via calls at the task level to set_toolname() and set_toolversion().

1.5 CALDB Access

The HEASARC Calibration Database (CALDB) system stores and indexes calibration data associ-
ated with high energy astronomical instrumentation so that they can be discovered using a standard
interface by scientists and analysis software. The system can be accessed by users and software alike
to determine which calibration datasets are available, and which should be used for data reduction
and analysis. The CALDB is the standard way that HEASOFT tasks access instrument-specific
calibration information.

The CALDB is accessible to HEASOFT tasks through the HEASOFT caltools task and the cali-
bration library (callib), or by using the HDgtcalf routine which supports both C/C++ and Perl.
Developers of missions which use use HEASOFT to calibrate and analyze data should include their
FITS-formatted calibration files in the HEASARC CALDB. Developers can contact the HEASARC
CALDB manager to include new calibration data in the HEASARC CALDB.

1.6 Scripting

HEASOFT tasks can be used in scripts to develop complex data processing/analysis pipelines, using
a variety of scripting languages. Scripts to be distributed as part of a HEASoft package should
be written using Perl or Python. The HEASARC currently provides C/Perl interface libraries for
CFITSIO, APE, and other core libraries. Development of Python libraries is ongoing.

https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/
https://heasarc.gsfc.nasa.gov/FTP/software/lheasoft/release/src/heacore/heautils/HDgtcalf.html
mailto:caldbmgr@bigbang.gsfc.nasa.gov

CHAPTER 1. INTRODUCTION

Chapter 2

Overview of HEASOFT Libraries

The heacore/ directory contains source code for a number of libraries which are expected to be
generally useful and independent of any specific mission. These core libraries will automatically be
built and available for linking by any or all of the tool packages via the standard hmake build process.
Some of these libraries have been developed at the HEASARC, while others are public, external
packages which have been packaged and redistributed as part of HEASOFT. Documentation for
each library component may be found under the directory containing that component.

The software components under the heacore/ directory are:
e CFITSIO: A standard FITS file I/O library developed at the HEASARC

e CCFITS: An object-oriented interface to the CFITSIO library designed to make the capabil-
ities of CFITSIO available to programmers working in C++

e APE: An IRAF-style parameter interface library, based on the PIL code developed for the
INTEGRAL mission at the Integral Science Data Center (ISDC)

e READLINE: A standard input library which supports shell-style tab completion and com-
mand recall functions

o Astro-FITS-CFITSIO: A CFITSIO Perl module, distributed by Pete Ratzlaff (CfA)
e AST: The Starlink AST library for handling world coordinate systems in astronomy
e WCSLIB: Mark Calabretta’s FITS World Coordinate System standard library

e FETW: Library for computing the discrete Fourier transform (DFT)

e mpfit: Uses the Levenberg-Marquardt optimization technique to solve the least-squares prob-
lem

e heainit: HEADAS initialization functions callable at global scope

e heaio: Public C/C++ callable HEADAS replacements for standard C I/O facilities

9

https://heasarc.gsfc.nasa.gov/fitsio
https://heasarc.gsfc.nasa.gov/fitsio/ccfits
http://isdc.unige.ch
https://tiswww.case.edu/php/chet/readline/rltop.html
http://hea-www.harvard.edu/~rpete/cfitsio
http://starlink.eao.hawaii.edu/starlink/AST
http://www.atnf.csiro.au/people/mcalabre/WCS
http://fftw.org
https://heasarc.gsfc.nasa.gov/FTP/software/lheasoft/release/src/heacore/mpfit/README.html

10

CHAPTER 2. OVERVIEW OF HEASOFT LIBRARIES

heautils: Assorted HEADAS utilities for randomization, smoothing, polynomial fitting, error
reporting, and other common tasks.

heasp: HEADAS C/C++/Python library which can be used to manipulate spectrum and
response files associated with high energy astrophysics spectroscopic analysis

heaapp: HEADAS facility for allowing client applications to select, initialize and use various
available HEASoft libraries for standard support functions, such as parameter handling and
output/error logging

ahfits: Mission-independent wrapper to CFITSIO, providing a more convenient way to per-
form common operations on FITS files (opening & closing files, navigating file extensions,
reading & writing files)

ahgen: HEADAS library provides functions for string manipulation, file path handling, ran-
dom number generation, and access to global clobber, buffer, and history states

ahlog: HEADAS logging routines (a wrapper to st_stream)

st_stream: HEADAS library for formatting and manipulating output streams

More detailed documentation for important HEADAS native heacore libraries follows below.

2.1

attitude

The software components of the attitude/ directory are:

2.2

atFunctions: Library of attitude-related routines developed at ISAS

aber: Support routines for computing aberration

coord/coordfits: Additional routines for attitude, coordinate transformations, etc.
ephemeris: Routines for calculating the positions of celestial bodies

geomag: Code for calculating geomagnetic rigidity at a given time and position on an orbit
param_wrappers: Wrappers for parameter file input/output

random: Random number generator (but see also heautils below)

heainit

headas.h

Header file containing function prototypes, etc.

https://heasarc.gsfc.nasa.gov/docs/software/lheasoft/headas/heasp/
http://www.isas.ac.jp/e

2.3. HEAIO 11

2.3

headas_init.c

Contains routines called internally — developers should not ever need to call these explicitly:

int headas_init(int, char *x*)
Calls routines to initialize PIL and output streams. It also deals with standard HEADAS
parameters (chatter, clobber, history).

int headas_close()
Closes output streams and PIL.

int hdIO0Init()
Checks environment variables (e.g. HEADASOUTPUT, HEADASERROR) and sets up
output streams.

int hd_pil_err_logger (char *s)
Default PIL error logging routine. Simply prints to stderr.

int headas_start_up(int, char **, const char *)

Set up logging.

headas_main.c

This file comprises the main program unit for every task. It calls headas_init() followed
by the task subroutine itself and then calls headas_close() after the task completes. This
main routine is not part of any library and must be explicitly included by all C tasks (via
#include "headas_main.c”). For Fortran tasks it is automatically compiled and linked in by
the Makefile.

heaio

headas_stdio.c

Contains routines used to write diagnostic and error output to the standard HEADAS out-
put/error streams (replacing C stdio routines):

int headas_printf(const char *, ...)
Replaces the stdio printf() with identical arguments. Text is written to the location
specified by the HEADASOUTPUT environment variable (if present) instead of to std-
out.

int headas_chat(int, const char *, ...)
Same as headas_printf() but takes an integer argument which specifies the threshold
chatter level below which the text will not be output.

int pil_printf(const char *, ...)
A substitute for printf() for internal use by PIL only. Should not be called by tasks
directly (NOT CURRENTLY USED).

void headas_f77echo(const char *)

A Fortran-callable version of headas_printf(). It is called hdecho() from Fortran pro-
grams.

12 CHAPTER 2. OVERVIEW OF HEASOFT LIBRARIES

— void headas_f77err(const char *)
A Fortran-callable version of fprintf(stderr, ...). Called hderr() from Fortran. This rou-
tine will write to the stderr stream (which may have been redirected via the HEADASER-
ROR environment variable).

— void headas_f77chat(int, const char *)
A Fortran-callable version of headas_chat(). It is called hdchat() from Fortran.

2.4 heautils

e headas_utils.c

Contains utility routines:

— int headas_parstamp(fitsfile *, int)
Writes a block of HISTORY keywords into a FITS file header listing all the runtime
parameter values. Arguments are a FITS file pointer and extension number. Callable
from Fortran as hdparstamp(). *** DEPRECATED *** PLEASE USE HDpar_stamp
(see below) INSTEAD ***

— int HDpar_stamp(fitsfile *, int, int *)
Writes a block of HISTORY keywords into a FITS file header listing all the runtime
parameter values. Arguments are a FITS file pointer, extension number, and status
pointer. Callable from Fortran as hdpar_stamp().

— char xhdbasename(char *)
Equivalent to the basename() function (returns the filename portion of an input path-
name).

— int headas_clobberfile(char *)
Deletes the specified file if it already exists and if the clobber parameter for the current
task is set to "yes”. Callable from Fortran as hdclobber().

— float hd_ran2(long *)

Random number generator based on ran2() from Numerical Recipes in C, 2nd ed., p282.
Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values).
Call with a negative integer argument to initialize. Callable from Fortran as hd_ran2().

e headas_toolname.c

Contains routines to get/set the name/version of the current task:

— void set_toolname(const char *)
Use this to register the task’s name. The Fortran version is hdnameset().

— void get_toolname(char *)
Use this to retrieve the task’s name. If it hasn’t been set (via set_toolname()) a de-
fault name is determined from the name of the executable file. The Fortran version is
hdnameget|().

2.4. HEAUTILS 13

— void set_toolversion(const char *)
Use this to register a version number string for a task. The Fortran version is hdverset().
— void get_toolversion(char *)
Use this to retrieve a string containing the task’s version number. If it hasn’t been set
(via set_toolversion()) a default version number string of 70.0” is returned. The Fortran
version is hdverget().
— void get_toolnamev(char *)

Use this to retrieve a single string containing both the task’s name and version number

(joined by a ”_”). The Fortran version is hdnamevget().

e headas_history.c

Contains routines to get/set the value of the history parameter. Designed primarily for
internal use and under normal circumstances should not be called by tasks explicitly.

— void get_history(int *)
This routine returns the value of the history parameter (if present) or ”-1" if unspecified.
Called by headas_parstamp(). Fortran version is hdghis().

— void set_history(int)
This registers the value of the history parameter. If it is called explicitly from a task it
will override the user-specified value. Fortran version is hdphis().

e headas_copykeys.c

Contains routine to copy non-critical keywords from one HDU to another..

— int HDcopy_keys(fitsfile *inptr, fitsfile *outptr, int docomments,
int dohistory, int *status)

Both the input and output FITS files should be positioned at the correct HDU. If
docomments is true then COMMENT records will be copied and if dohistory is true
then HISTORY records will be copied.

e headas_polyfit.c
Contains routine to do a least-square polynomial fit.

— void HDpoly_fit(double * x, double * y, double * c, int n, int degree)
where x is the input n-element array of independent variables, y is the input n-element
array of dependent variables, degree is the degree of the polynomial, and c is the output
degree+1-element array of coefficients.

e headas_sort.c
Contains routine to do a quick sort on the input array, returning sorted index (instead of

data as with C gsort).

— void HDsort(float * base, int * index, int n)

where base is the input n-element unsorted data array and index is the input/output
n-element array index.

14 CHAPTER 2. OVERVIEW OF HEASOFT LIBRARIES

e headas_smooth.c

Contains routine to do a boxcar average on input data:

— void HDsmooth(float * input, float * output, int num, int width)

where input is the num-element unsmoothed array, output is the num-element smoothed
array, and width is the width of the boxcar.

e headas_svdfit.c

Contains routines used by HDpoly_fit (slightly modified versions of routines from Press,
William H., Brian P. Flannery, Saul A Teukolsky and William T. Vetterling, 1986, ”Nu-
merical Recipes: The Art of Scientific Computing” (Fortran), Cambridge University Press.

e headas_rand.c

Contains routines to generate (0,1) uniformly distributed pseudo-random numbers (using
”Mersenne Twister” method).

— void HDmtInit(unsigned long int seed)
Initialize the algorithm. Must be called first.

— void HDmtFree()
Clear the algorithm.

— double HDmtRand()
Return a pseudo-random number.

e headas_file_check.c

Checks for the existence and/or access mode of a file.

— void HDfile_check(const char *file_name, const char *open_mode)

Returns 0 if file is accessible in the given mode or 1 to indicate problems.

e HDgtcalf.c
Routine to return the location of calibration data sets located in the CALDB.

— int HDgtcalf (const charx tele, const char* instr, const char* detnam,
const char* filt, const char* codenam, const char* strtdate,
const char* strtime, const char* stpdate, const char* stptime,
const char* expr, int maxret, int filenamesize, char** filenam,
long* extno, char** online, int* nret, int* nfound, int* status)

Returns a CALDB file based on input criteria.

e headas_gti.c

Contains utility routines for manipulating Good Time Intervals.

— int HDgti_init(struct gti_struct *gti)

Initialize an already-existing GTT structure

2.5. HEASP 15

— int HDgti_free(struct gti_struct *gti)
Deallocate memory associated with GTI structure
— int HDgti_copy(struct gti_struct *dest, struct gti_struct *src, int *status)
Deep copy GTI from one structure to another
— int HDput_frac_time(fitsfile *fileptr, char *key, double vali, double valf,
int force, char *comment, int *status)

Write (potentially) fractional time keyword from FITS header

— int HDgti_grow(struct gti_struct *gti, int new, int *status)
Enlarge the storage of an existing GTI structure
— int HDgti_read(char *filename, struct gti_struct *gti, char *extname,

char *start, char *stop, struct gti_struct *refer_to,
fitsfile *xfptr, int *status)

Read a GTTI extension from a FITS file
— int HDgti_write(fitsfile *fptr, struct gti_struct *gti, char *extname,
char *start, char *stop, int *status)
Create a GTI extension and write it
— int HDgti_merge(int mode, struct gti_struct *gti, struct gti_struct *agti,
struct gti_struct *bgti, int *status)
Merge two GTTs either using intersection or union
— 1int HDgti_clean(struct gti_struct *gti, struct gti_struct *ogti,
int *status)
Clean a GTI by sorting, removing duplicates, overlaps
— int HDgti_where(struct gti_struct *gti, int ntimes, double *times,
int *segs, int *status)

Which good time intervals a set of times falls into

2.5 heasp

HEASP is a C/C++/Python library to manipulate files related to spectroscopic analysis ie. PHA,
RMF, ARF, and table model files. The library is described more fully in its own document. The
C interface routines are summarized below. To use any of these include the Cheasp.h file which
should be consulted for descriptions of the structs defined.

2.5.1 PHA files

e int ReadPHAtypeI(char *filename, long PHAnumber, struct PHA *phastruct)

Read the type I PHA extension from a FITS file - if there are multiple PHA extensions then
read the PHAnumber instance.

16 CHAPTER 2. OVERVIEW OF HEASOFT LIBRARIES

e int ReadPHAtypelII(char *filename, long PHAnumber, long NumberSpectra,
long *SpectrumNumber, struct PHA **phastructs)

Read the type II PHA extension from a FITS file - if there are multiple PHA extensions then
read the PHAnumber instance - within the typell extension reads the spectra listed in the
SpectrumNumber vector.
e int WritePHAtypeI(char *filename, struct PHA *phastruct)
Write the type I PHA extension to a FITS file.
e int WritePHAtypeII(char *filename, long NumberSpectra,
struct PHA **phastructs)
Write the type II PHA extension to a FITS file.

e int ReturnPHAtype(char *filename, long PHAnumber)

Return the type of a PHA extension.

e void DisplayPHAtypeI(struct PHA *phastruct)

Write information about spectrum to stdout.

e void DisplayPHAtypeII(long NumberSpectra, struct PHA **phastructs)

Write information about spectra to stdout.

e int RebinPHA(struct PHA *phastruct, struct BinFactors *bin)

Rebin spectrum.

e int CheckPHAcounts(char *filename, long PHAnumber)

Return 0 if COUNTS column exists and is integer or COUNTS column does not exist.

e long ReturnNumberofSpectra(char *filename, long PHAnumber)

Return the number of spectra in a type II PHA extension.

2.5.2 RMF files

e int ReadRMFMatrix(char *filename, long RMFnumber, struct RMF *rmf)
Read the RMF matrix from a FITS file - if there are multiple RMF extensions then read the
RMFnumber instance.

e int WriteRMFMatrix(char *filename, struct RMF *rmf)

Write the RMF matrix to a FITS file.

e int ReadRMFEbounds(char *filename, long EBDnumber, struct RMF *rmf).

Read the RMF ebounds from a FITS file - if there are multiple EBOUNDS extensions then
read the EBDnumber instance.

2.5. HEASP 17

e int WriteRMFEbounds(char *filename, struct RMF *rmf)
Write the RMF ebounds to a FITS file.

e void DisplayRMF (struct RMF *rmf)
Write information about RMF to stdout.
e void ReturnChannel (struct RMF *rmf, float energy, int NumberPhotons,
long *channel)
Return the channel for a photon of the given input energy - draws random numbers to return
NumberPhotons entries in the channel array.
e void NormalizeRMF (struct RMF *rmf)

Normalize the response to unity in each energy.

e void CompressRMF(struct RMF *rmf, float threshold)

Compress the response to remove all elements below the threshold value.

e int RebinRMFChannel (struct RMF *rmf, struct BinFactors *bins)

Rebin the RMF in channel space.

e int RebinRMFEnergy(struct RMF *rmf, struct BinFactors *bins)

Rebin the RMF in energy space.

e void TransposeRMF(struct RMF *rmf, struct RMFchan *rmfchan)

Transpose the matrix.

e float ReturnRMFElement(struct RMF *rmf, long channel, long energybin)
Return a single value from the matrix.
e float ReturnRMFchanElement(struct RMFchan *rmfchan, long channel,
long energybin)

Return a single value from the transposed matrix.

e int AddRMF(struct RMF *rmfl, struct RMF *rmf2)
Add rmf2 onto rmfl.

2.5.3 ARF

e int ReadARF(char *filename, long ARFnumber, struct ARF *arf)
Read the effective areas from a FITS file - if there are multiple SPECRESP extensions then
read the ARFFnumber instance.

e int WriteARF(char *filename, struct ARF *arf)

Write the ARF to a FITS file.

18 CHAPTER 2. OVERVIEW OF HEASOFT LIBRARIES

e void DisplayARF(struct ARF *arf)
Write information about ARF to stdout.

e int AddARF(struct ARF *arfl, struct ARF *arf2)
Add arf2 onto arfl.

e long MergeARFRMF (struct ARF *arf, struct RMF *rmf)
Multiply the ARF into the RMF.

2.5.4 Utility routines

e int SPReadBinningFile(char *filename, struct BinFactors *binning)

Read an ascii file with binning factors and load the binning array.

int SPSetGroupArray(int inputSize, struct BinFactors *binning,
int *groupArray)

Set up a grouping array using the BinFactors structure.

int SPBinArray(int inputSize, float *input, int *groupArray, int mode,
float *output)

Bin an array using the information in the grouping array.

void SPsetCCfitsVerbose(int mode)
Set the CCfits verbose mode.

int SPcopyExtensions(char *infile, char xoutfile)

Copy all HDUs which are not manipulated by this library.

int SPcopyKeywords(char *infile, char *outfile, char *hduname, int hdunumber)

Copy all non-critical keywords for the hdunumber instance of the extension hduname.

Chapter 3

HEADAS Maketfiles

3.1 Introduction

HEADAS Makefiles are designed so that the most common steps needed to build and install software
can be accomplished with minimal effort, but the flexibility exists to override and extend standard
behavior. This is accomplished by including a “standard” Makefile in every HEADAS Makefile. In
this way, developers can perform most functions simply by filling in definitions for a standard set
of macros before the “standard” Makefile is included. Most of the time, there is no need to add
explicit targets. Explicit targets should generally be avoided, because using explicit targets risks
breaking the build process if the “standard” Makefile is ever changed.

Note that when using a standard HEASOFT installation, a Makefile generator utility (hdmk) is
available for use on the command line. hdmk prompts the developer for some basic information,
and then scans the current directory for source code files (.c, .cxx, .f90, etc.), scripts, parameter files,
(.par), and help files (.html, .txt) which it uses to put together a first attempt (”Makefile.new”).

3.2 A simple Makefile to add a new task to an existing package
component

Before discussing the details of the “standard” Makefile, we start with a simple example: adding a
new, standalone compiled task to an existing software package component.

Suppose one wishes to build a task called sample for the Swift mission from the files samplel.c
and sample2.c. Assume this task has a help file called sample.html, and a parameter file called
sample.par and a unit test in the form of a perl script named ut-sample, which produces a FITS
file ut-sample.fits. The following Makefile would supply all the necessary targets and macros to
make the task behave (build, install, clean, test, etc.) like all other HEADAS tasks:

Component (mission) name.
Developers need not change/delete this if the component already exists.
HD_COMPONENT_NAME = swift

19

20 CHAPTER 3. HEADAS MAKEFILES

Software release version number. Developers need not change/delete this.
HD_COMPONENT_VERS =

If this directory needs to build a task, list its name here.
HD_CTASK = sample

C language source files (.c) to use for the task.
HD_CTASK_SRC_c = samplel.c sample2.c

C flags to use in every compilation.
HD_CFLAGS = ${HD_STD_CFLAGS}

Library flags to use when linking C task.
HD_CLIBS = ${HD_STD_CLIBS}

Task(s) to be installed.
HD_INSTALL_TASKS = ${HD_CTASK}

Help file(s) to install.
HD_INSTALL_HELP = ${HD_CTASK}.html

Parameter file(s) to install.
HD_INSTALL_PFILES = ${HD_CTASK}.par

Perl unit test script(s) to install.
HD_TEST_PERL_SCRIPTS = ut-sample

Extra item(s) to remove during a clean or distclean.
HD_CLEAN = ut-sample.fits

Include the standard HEADAS Makefile to do the real work.
include ${HD_STD_MAKEFILE}

Note that, as in all UNIX Makefiles, macro definitions must start at the beginning of a line, with
no whitespace of any kind before the macro name.

This Makefile will provide the following targets, which will have the stated behaviors:

e default: Build each source file to produce an object file, then link the object files to create
the compiled task. This is also the target which will be created by make if one invokes make
with no explicit target.

e all: Perform the same actions as the default target, and in addition, publish the compiled
task into the local build area.

3.3. STANDARD MACROS 21

e clean: Remove all object files and other build by-products, as well as the FITS file created
by the unit test script.

e distclean: Remove the compiled task in addition to the items removed by the clean target.
e install: Install the compiled task into the proper destination in the “installed” location.

e install-test: Install the test script into the proper destination in the “installed” location.

In general, the easiest way to create a new Makefile for a package directory is to copy a Makefile
from a similar package. A good practice when starting a new task for a given mission (for example,
the Swift mission) is to use another Makefile from an established task for that mission (for example,
another Swift task Makefile like the xrtcalcpi task) as your new Makefile template. For a new
library for Hitomi, start with an existing Hitomi library Makefile, etc.

3.3 Standard Macros

Most, if not all, actions a Makefile needs to perform can be controlled entirely by setting one or more
standard macros. In general, defining a macro to have a (non-trivial) body enables a particular
behavior, while omitting a macro or defining it to have a trivial body (i.e. an empty definition)
disables that behavior. This way, a single Makefile can, in principle, control many distinct build
actions. It may not always be a good idea to structure Makefiles this way, but this flexibility allows
individual mission teams to structure their subdirectories to best suit their individual needs.

3.3.1 Macros Pertaining To All Build Actions

e HD_CFLAGS: Specifies compiler flags used in every C compilation, regardless of whether the
object file is included in a library or a task. Usually HD_CFLAGS should be defined to be
equal to ${HD_STD_CFLAGS}, which is set by hmake to be the correct flags for the current
component, architecture and compiler.

e HD_CLIBS: Provides flags which specify the libraries in the link line for tasks linked with C.
This includes path information (-L flags) to find the libraries as well as the library names
themselves (-1 flags). Usually this is set to ${HD_STD_CLIBS}, which is set by hmake to be the
standard C link information for the given software component.

e HD_CXXFLAGS: Compiler flags used in every C++ compilation, regardless of whether the
object file is included in a library or a task. Usually this should be defined to be equal to
${HD_STD_CFLAGS}, which is set by hmake to be the correct flags for the current component,
architecture and compiler.

e HD_CXXLIBS: Flags specifying the libraries in the link line for tasks linked with C++. This
includes path information (-L flags) to find the libraries as well as the library names themselves
(-1 flags). Usually this should be defined to be equal to ${HD_STD_CXXLIBS}, which is set by
hmake to be the standard C++ link information for the given software component.

22 CHAPTER 3. HEADAS MAKEFILES

Linking Fortran code with C or C++ usually requires some additional libraries to be included at
link time. The macro ${F77LIBS4C} is defined by hmake to hold this information for the current
architecture and compiler. If Fortran code is involved in a task, it may be necessary to add this
macro to the definition of HD_CLIBS and/or HD_CXXLIBS. If linking Fortran and C/C++ code
becomes a component-wide requirement, it is also possible for hmake to include the contents of the
F77LIBS4C macro directly in HD_STD_CLIBS and/or HD_STD_CXXLIBS.

3.3.2 Macros Pertaining To Tasks

The standard Makefile provides direct support for building tasks which have source files in C, C4++,
and/or Fortran. In principle a task may arbitrarily blend these languages.

At present, it is required that a C or C++ main function be used, rather than a Fortran program
statement. Consistent with this is the fact that the standard Makefile only supports linking using
a supported C or C++ compiler. This is controlled with two families of macros.

The first family controls tasks which are linked with C:

e HD_CTASK: The name of the executable which will be produced.

HD_CTASK_SRC_c: A list of C source files with the suffix .c.

HD_CTASK_SRC_f: A list of Fortran 77 source files with the suffix .f.

HD_CTASK_SRC_f90: A list of Fortran 90/95 source files with the suffix .f90.
HD_CTASK_SRC_f03: A list of Fortran 03 source files with the suffix .f03.

Note that there are no macros associated with C++ in this group. This is because if C++ code is
mixed with C, it is required that the task be linked with a supported C++ compiler.

Tasks linked with the C+-+ compiler are controlled with a second family of macros:

e HD_CXXTASK: The name of the executable which will be produced.

e HD_CXXTASK_SRC_C: A list of C++ source files with the suffix .C.

e HD_CXXTASK_SRC_cc: A list of C++ source files with the suffix .cc.

e HD_CXXTASK_SRC_cpp: A list of C4++ source files with the suffix .cpp.

e HD_CXXTASK_SRC_cxx: A list of C4++ source files with the suffix .cxx.

e HD_CXXTASK_SRC_c: A list of C source files with the suffix .c.

e HD_CXXTASK_SRC_f: A list of Fortran 77 source files with the suffix .f.

e HD_CXXTASK_SRC_f90: A list of Fortran 90/95 source files with the suffix .f90.
e HD_CXXTASK_SRC_f03: A list of Fortran 03 source files with the suffix .f03.

3.3. STANDARD MACROS 23

For C and Fortran source files, the convention is to use .c or .f, respectively, as the file suffix.
For C++4, a number of different conventions are in use, which is why there are a number of macros
whose names are distinguished by the suffix of the source files that each macro includes.

If the HD_CTASK macro is defined, the HD_CTASK_SRC_c macro must contain at least one source
file. If the HD_CXXTASK macro is defined, at least one of the HD_CXXTASK_SRC* macros which
contain C or C++ source files must contain at least one source file.

When one or both of these macro families are properly defined, the standard Makefile will build the
task(s) as part of the default target. First, all the source files in all the macros will be compiled,
using the flags specified in the relevant HD_*FLAGS macro. Then the resulting object files will be
linked to the libraries specified in the relevant HD_*LIBS macro.

3.3.3 Macros Pertaining To Libraries

The standard Makefile provides direct support for building shared and/or static libraries which
have source files in C, C++ and/or Fortran.

The following family of macros controls this process:

e HD LIBRARY_ROOQOT: The root name of the library, without the prefix lib and without any

suffix. For example, to build libmylib.so this macro would be simply mylib.

e HD_LIBRARY_SRC_c: A list of C source files with the suffix .c.

e HD_LIBRARY_SRC_C: A list of C++ source files with the suffix .C.

e HD_LIBRARY_SRC_cc: A list of C++4 source files with the suffix .cc.

e HD_LIBRARY_SRC_cpp: A list of C++ source files with the suffix .cpp.

e HD_LIBRARY_SRC_cxx: A list of C++ source files with the suffix .cxx.

e HD_LIBRARY_SRC_f: A list of Fortran 77 source files with the suffix .f.

e HD_LIBRARY_SRC_f90: A list of Fortran 90/95 source files with the suffix .f90.

e HD_LIBRARY_SRC_f03: A list of Fortran 03 source files with the suffix .f03.
At least one of the source macros must contain at least one file if the HD_LIBRARY_ROOT macro
is defined. With these macros properly defined, the standard Makefile will build the library as part

of the default target in the following way. First, all the source files listed in the source macros will
be compiled, then they will be placed into the relevant shared or static library.

3.3.4 Macros Pertaining To Installation

Another family of macros determine which items will be installed during the install step. For
maximum flexibility, no items are ever installed automatically. In order to install a binary which

24 CHAPTER 3. HEADAS MAKEFILES

was built by a Makefile, it is necessary to include that binary explicitly in the list of binaries
to install. A variation on install, called publish, is supported. Items to be published will be
installed into the local build area by the all target, but will not be installed in the final installed
area specifiedby the configure prefix.

The macros which control installation are:

e HD INSTALL_EXTRA: Explicit targets which will be produced by make at publish and
install time, and which take custom actions which do not fit into any category. This should
be used with caution.

e HD INSTALL_ONLY_EXTRA: Explicit targets which will be produced by make only at install
time, and which take custom actions which do not fit into any category. This should be used
with caution.

e HD_INSTALL_.HEADERS: C and/or C++ header files to be installed into the top-level
include/ directory. Not every header file necessarily needs to be installed. It is recom-

mended that some care go into designing header files so that only a minimum number needs

to be installed. If the macro HD_INC_SUBDIR is also defined, the files will be installed in a
subdirectory of the top-level include/ directory, (i.e. include/HD_INC_SUBDIR/).

e HD_INSTALL_HELP: Help/documentation files to be installed into the top-level help/ di-
rectory.

e HD _INSTALL_LIBRARIES: Libraries to be installed into the top-level 1ib/ directory.

e HD_INSTALL_PERL_LIBS: Perl libraries to be installed into the top-level 1ib/perl/ direc-
tory. If the macro HD_PERL_SUBDIR is also defined, the libraries will be installed in a
subdirectory of the top-level 1ib/perl/ directory (i.e. 1ib/perl/HD_PERL_SUBDIR/) instead.

e HD_INSTALL_PERL_SCRIPTS: Perl scripts to be installed into the top-level scripts/ di-
rectory (currently the same as the top-level bin/ directory). At install time, Perl scripts
will be edited to make sure that they use the version of Perl specified in the LHEA_PERL
environment variable.

e HD_INSTALL_PFILES: Parameter files to be installed into the top-level syspfiles/ direc-
tory.

e HD_INSTALL_PYTHON_LIBS: Python libraries to be installed into the top-level 1ib/python/
directory. If the macro HD_PYTHON_SUBDIR is also defined, the libraries will be installed in
a subdirectory of the top-level 1ib/python/ directory (i.e. 1ib/python/HD PYTHON_SUBDIR/)
instead.

e HD_INSTALL_PYTHON_SCRIPTS: Python scripts to be installed into the top-level scripts/
directory (currently the same as the top-level bin/ directory).

e HD INSTALL_REFDATA: Data files to be installed into the top-level refdata/ directory. If
the macro HD_REFDATA_SUBDIR is also defined, the files will be installed in a subdirectory
of the top-level refdata/ directory (i.e. refdata/HD_REFDATA_SUBDIR/) instead.

3.3. STANDARD MACROS 25

e HD_INSTALL_TASKS: Compiled tasks to be installed into the top-level bin/ directory.

e HD_INSTALL_SHELL_SCRIPTS: Shell scripts to be installed into the top-level scripts/
directory (currently the same as the top-level bin/ directory).

e HD_INSTALL_XML: XML files to be installed into the top-level xm1/ directory. If the macro
HD_XML_SUBDIR is also defined, the files will be installed in a subdirectory of the top-level
xml/ directory (i.e. xml/HD_XML_SUBDIR/) instead.

All items specified in the above macros will also be installed automatically as part of the publish
step. In addition, the publish step publishes the items listed in the following macros:

e HD_PUBLISH_.HEADERS: C and/or C++ header files to be published into the local build
include/ directory. Not every header file necessarily needs to be published.

e HD_PUBLISH_HELP: Help/documentation files to be published into the local build help/
directory.

e HD_PUBLISH_LIBRARIES: Libraries to be published into the local build 1ib/ directory.

e HD_PUBLISH PERL_LIBS: Perl libraries to be published into the local build 1ib/perl/
directory.

e HD_PUBLISH_PERL_SCRIPTS: Perl scripts to be published into the local build scripts/
directory (same as the local build tasks/ directory). At publish time, Perl scripts will be
edited to make sure that they use the version of Perl specified in the LHEA _PERL environment
variable.

e HD_PUBLISH_PFILES: Parameter files to be published into the local build syspfiles/ di-
rectory.

e HD_PUBLISH_REFDATA: Data files to be published into the local build refdata/ directory.
e HD_PUBLISH_TASKS: Compiled tasks to be published into the local build bin/ directory.

e HD_PUBLISH_SHELL_SCRIPTS: Shell scripts to be published into the local build scripts/
directory (same as the local build tasks/ directory).

3.3.5 Macros Pertaining To Subdirectories

Subdirectories into which the current Makefile should recurse when performing all standard actions
(default, all, install, publish, clean, distclean) can be specified in the HD_SUBDIRS macro.

26

CHAPTER 3. HEADAS MAKEFILES

Chapter 4

HEADAS Error Handling Facility

4.1 Introduction

The heautils library contains the HEADAS error handling functions, which provide a means
by which calling code can set and clear error conditions, and manage supporting information
about errors. When an error condition is first encountered, a call to the HDerror_throw function
sets the error state of the error handler, and adds an optional message. Subsequent calls to the
HDerror_hint function can be used to place additional messages on the error stack. Each of
these can produce an error message containing the file name and line number where the error
occurred. This feature in effect provides a stack trace of the error without using a debugger. The
HDerror_reset function can be used to reset the error handler to a non-error condition.

In addition, the HEADAS error facility establishes default error messages for error codes. By
convention, HEADAS uses the following error range standards:

e crror numbers between 1 and 999 denote CFITSIO errors

e crror numbers from -3999 to -3000 are associated with APE.

Each of these error codes has an associated standard error message. The HEADAS error handler
maps each error code to its message. New error maps can be added by the software developer, in
order to provide standard error messsages for new software components within different numeric
code ranges. Such maps may be used as a task exits. and will print a standard message if no
custom message is available.

For convenience, several macros which wrap these functions are also provided. The macros HD_ERR_SET,
HD_ERR_-THROW, and HD_ERR_HINT use the functions HDerror_throw and HDerror_hint.
These macros can check their status arguments before calling their underlying functions, thus
eliminating the overhead of a function call unless an error actually occurs. Also, the functions
HDerror_throw and HDerror_hint have arguments which can be used to give the source file and

line number of the error. The macros listed above do not take these arguments, but use the __FILE__

and __LINE__ macros to create them when they call the appropriate error function.

27

28 CHAPTER 4. HEADAS ERROR HANDLING FACILITY
4.2 HEADAS Error Handling API

The HEADAS Error Handling API contains a number of functions and macros. The macros should
be used whenever possible, because they are easier to use and offer performance advantages. Central
concepts are that each error message has an associated integer error number, and that the error
handler as a whole also has an error number corresponding to the first error encountered.

The HEADAS error handling functions are:

1 int HDerror_get(void)

Returns the current value of the error handler’s integer error status variable.

2 int HDerror_throw(const char * msg, const char * fileName, int line, int errNum)

This function uses the errNum argument to determine if an error has occurred, and if one
has, changes the state of the error handler as appropriate to include the given information
about the error. The argument msg is a string describing the error. If it is NULL, no text
message will be added. Arguments fileName and line are the file name and line number
where the error was thrown. If fileName is NULL, this information will not be included.
The argument errNum is used in conjunction with the error handler’s internal error status as
follows: if either errNum or the error handler’s internal status is non-zero, the information
about the error will be added to the error handler’s error message stack. If the error handler’s
internal status is zero, it will be set equal to errNum. Otherwise, the error handler’s internal
status will not be changed.

This function cannot be used to reset the error handler’s internal status to zero after an error.
To do this, use HDerror_reset ().
3 int HDerror_hint(const char * msg, const char * fileName, int line, int errNum)

This function is similar to HDerror_throw, described above. The arguments given may be
used to add to the description of an error. The difference between the two functions is that
HDerror_hint never affects the overall error status of the error handler. HDerror_hint may
thus not be used to create an error condition, only to comment on an existing error condition.

4 int HDerror_reset(void)

Resets the error handler’s status to HD_OK and clears the error message stack.

5 int HDerror_get_stack(const char** stack)

This function returns a NULL-terminated array of const char* pointers which contains the
current stack of messages. The standard HEADAS shutdown code which executes just before
a task exits will print this stack to stderr if the task exits with non-zero status.

6 void HDerror_dump_silence(int silent)

Sets a silent mode which suppresses all reporting of errors. Calling it with a non-0 argument
activates silent mode, while calling it with an argument of 0 sets non-silent (normal) mode.
Note that silencing error reporting does not prevent error messages from being added to the
error stack; rather it merely prevents these messages from being displayed.

4.2. HEADAS ERROR HANDLING API 29

This function should not be used in general. It is present only for the benefit of certain tools
which return a non-0 exit status to indicate something other than an error. For example,
ftdiff uses a non-0 status to indicate that it detected differences between the two input files.

7 int HDerror_dump_is_silent(void)

Returns the current silent mode of the error reporting mechanism. A non-0 value indicates
errors are silenced, while a value of 0 indicates errors will be reported.

The HEADAS error handling macros are:

1 HD_.OK

Macro whose value is 0, used throughout HEADAS software to indicate normal (non-error)
status.

2 HD_ERROR_GET))

Macro which simply calls HDerror_get (). This is provided mainly for completeness and to
allow a consistent look and feel if other similar macros are used.

3 HD_ERROR_.THROW(MSG, STATUS)

This macro is provided for more convenient access to the function HDerror_throw(). This
macro simply calls the function, using MSG for the input argument msg, STATUS for the input
argument errNum, and filling in the fileName and line arguments using ANSI C’s _FILE__
and __LINE__ macros.

4 HD.ERROR_SET(STATUS)

This macro is provided for more convenient access to the function HDerror_throw(). This
macro simply calls the function, using NULL for the input argument msg, STATUS for the
input argument errNum, and filling in the fileName and line arguments using ANSI C’s
_FILE__ and __LINE__ macros.

5 HD_ERROR_HINT(MSG, STATUS)

This macro is provided for more convenient access to the function HDerror_hint (). This
macro simply calls the function, using MSG for the argument msg, STATUS for the argument
errNum, and filling in the fileName and line arguments using ANSI C’s __FILE__and __LINE__
macros.

	Introduction
	Configuration Management and HEASOFT Setup
	Input and Output
	Input
	Output

	General Notes
	Task Name and Version Number
	CALDB Access
	Scripting

	Overview of HEASOFT Libraries
	attitude
	heainit
	heaio
	heautils
	heasp
	PHA files
	RMF files
	ARF
	Utility routines

	HEADAS Makefiles
	Introduction
	A simple Makefile to add a new task to an existing package component
	Standard Macros
	Macros Pertaining To All Build Actions
	Macros Pertaining To Tasks
	Macros Pertaining To Libraries
	Macros Pertaining To Installation
	Macros Pertaining To Subdirectories

	HEADAS Error Handling Facility
	Introduction
	HEADAS Error Handling API

