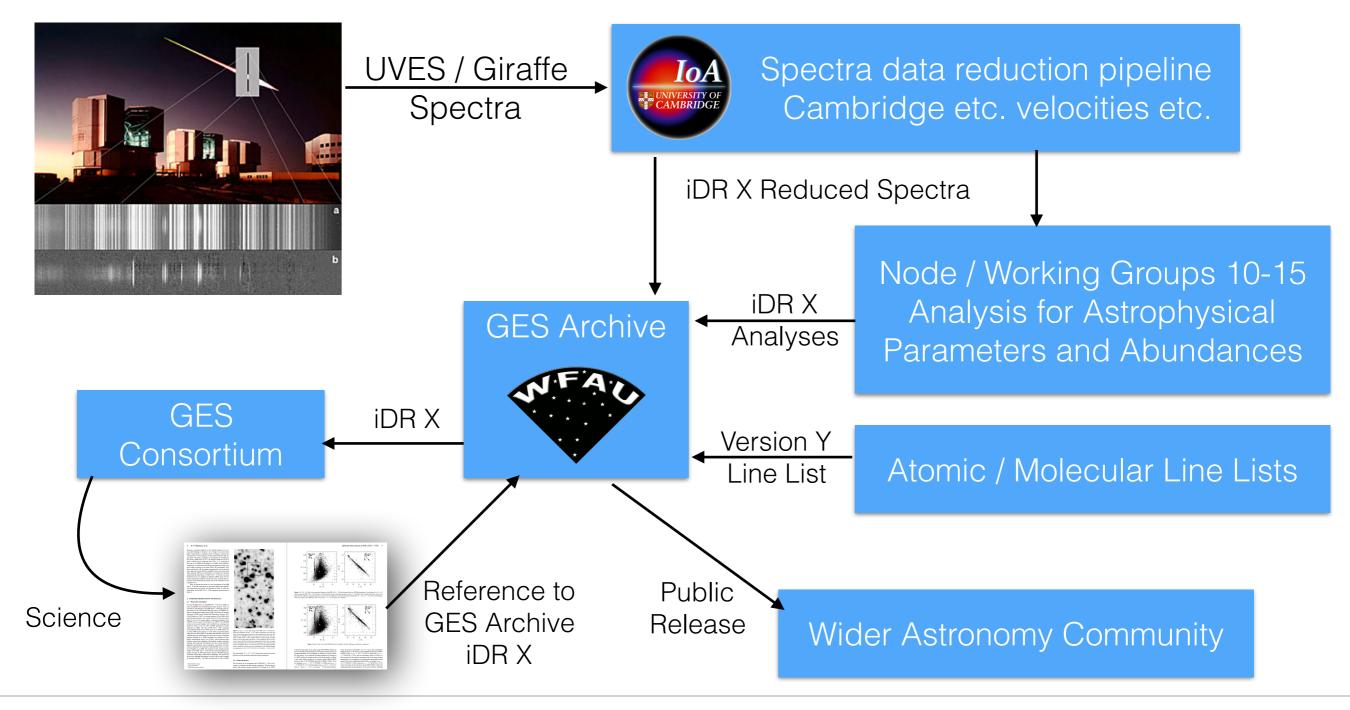


Using the GES Science Archive

Ross Collins

Wide-Field Astronomy Unit Institute for Astronomy Royal Observatory University of Edinburgh


WFAU Team: Clive Davenhall, Mike Read, Eckhard Sutorius and Nigel Hambly

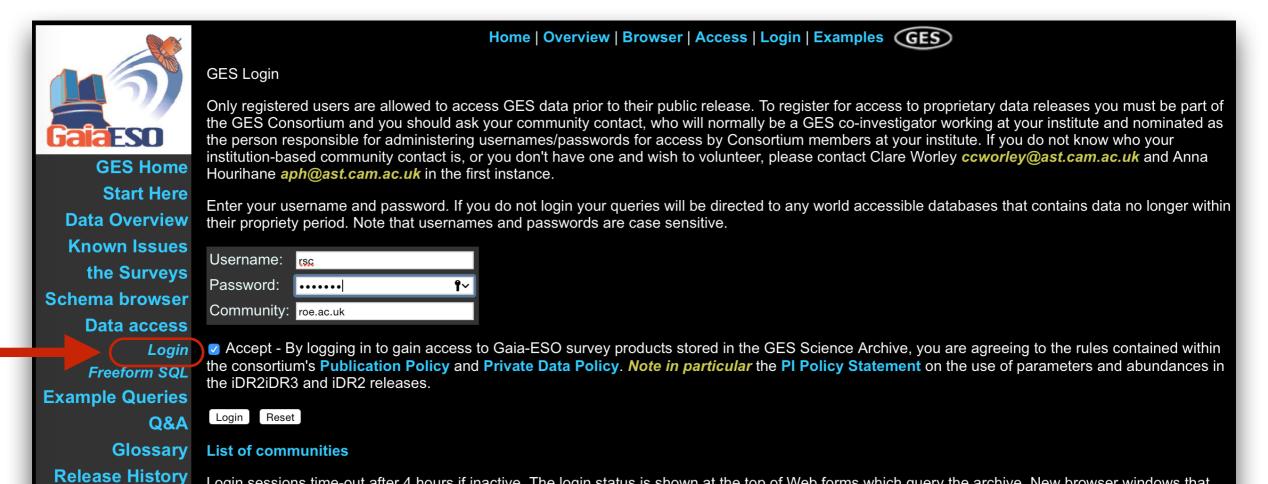
Cambridge Team: Anna Hourihane, Clare Worley

Where does the GES Science Archive fit into the Gaia-ESO Survey?

What is a Science Archive?

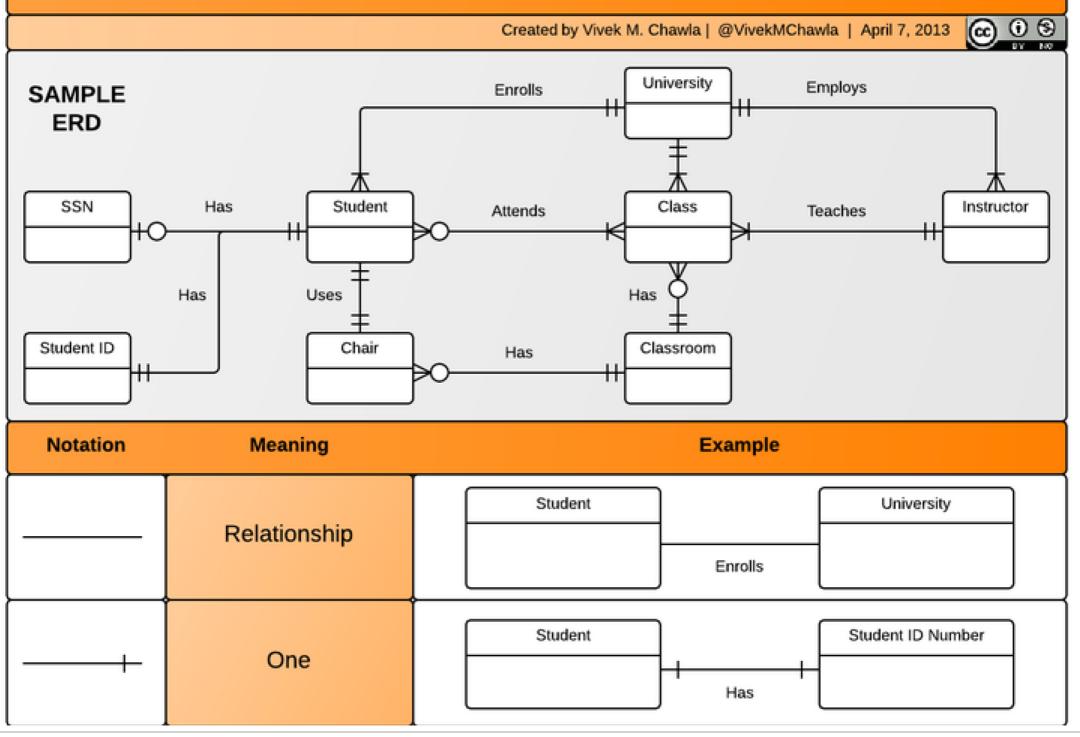
- Not a simple repository of dumped data output from a survey
- Data in a science archive should be:
 - Well described / documented
 - Versioned
 - Persistent
 - Linked both internally and externally
 - Interactive and easily queried

Where is the GES Science Archive?

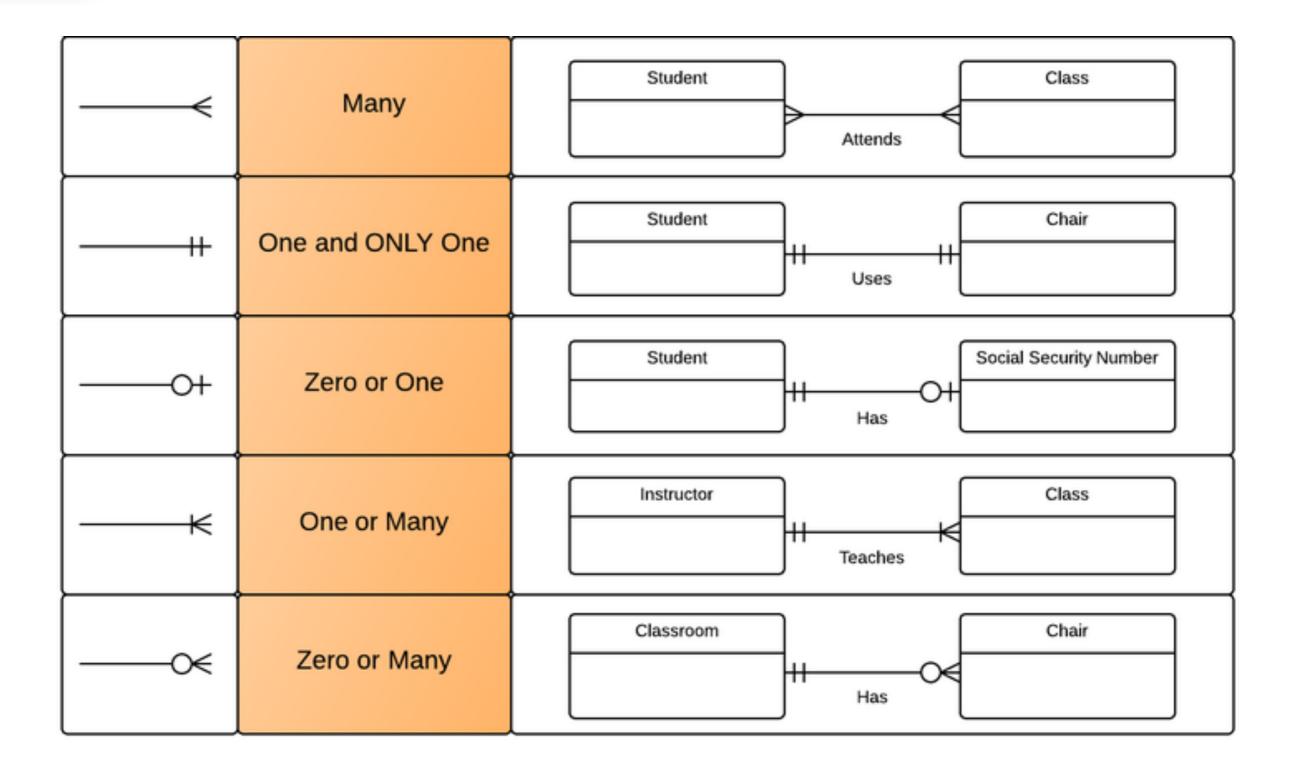


Gallerv

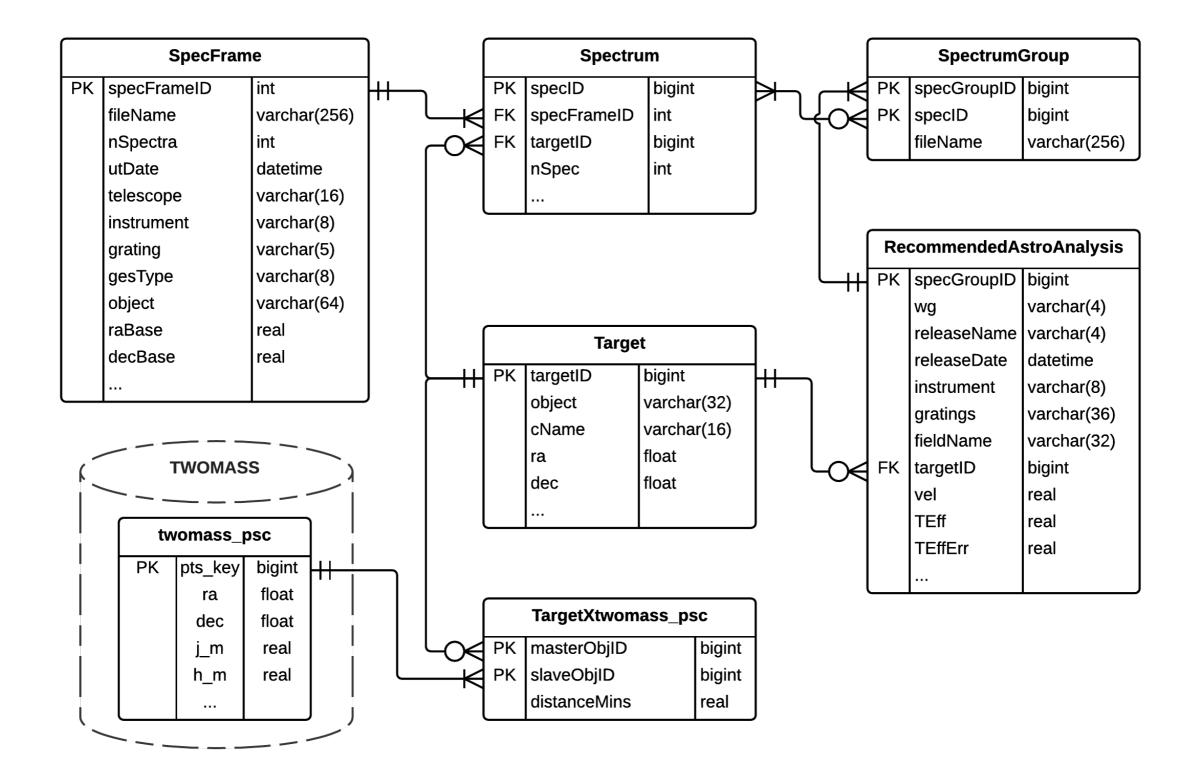
- Access is only granted to consortium members at present (eventually after the final data release we'll open the archive to the wider public)
- Authorisation / authentication is distributed amongst community contacts: one per institution



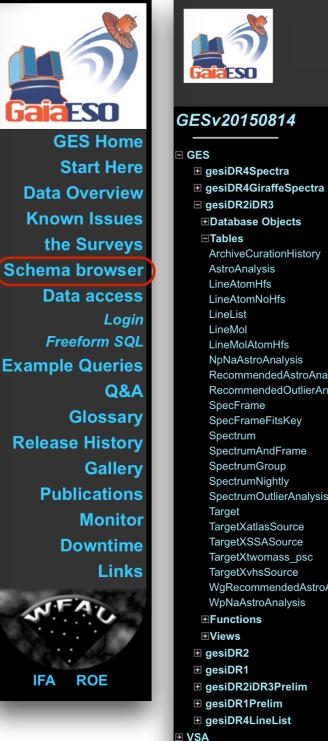
Login sessions time-out after 4 hours if inactive. The login status is shown at the top of Web forms which query the archive. New browser windows that have been opened from within a logged in browser should be passed the login status.



ERD "Crow's Foot" Relationship Symbols [Quick Reference]



Main Data Model



Schema Browser

Database Objects

AstroAnalysis

LineAtomNoHfs

LineMolAtomHfs

SpecFrame

Spectrum

Target

NpNaAstroAnalysis

SpecFrameFitsKey

SpectrumAndFrame

TargetXatlasSource

TargetXSSASource

TargetXvhsSource

WpNaAstroAnalysis

Functions

🖲 WSA SSA
 SA
 SA
 TWOMASS

TargetXtwomass_psc

WgRecommendedAstroAnalysis

SpectrumOutlierAnalysis

SpectrumGroup

SpectrumNightly

RecommendedAstroAnalysis

RecommendedOutlierAnalysis

LineAtomHfs

ArchiveCurationHistory

⊡Tables

LineList

LineMol

GES Browser

Home | Overview | Browser | Access | Examples | Links | Credits

TABLE VIEW RecommendedAstroAnalysis

Overall recommended astrophysical parameter and abundances analyses

The final, overall astrophysical parameter and abundances for each star recommended by the GES Consortium. These values have been collated and and assembled by GES working group 15. They are the values most likely to be used by individuals not deeply involved in the GES Consortium.

Notes: All abundances of element X are given in the following format:

 $\log \varepsilon(X) = \log(N_X/N_H) + 12.0$

Upper_Combined_X allowed flag values are: 0 = neutral detection; 1 = neutral upper limit; 2 = detection for combined results (neutral & ionised element); 3 = upper limit for combined results (neutral & ionised element)

Upper_X allowed flag values are: 0 = ionised detection1 = ionised upper limit

Allowed values for limit flags on abundances derived from equivalent widths and photometric temperatures: 0 = detection; 1 = upper limit The details and SQL SELECT corresponding to this view are available here.

Name	Туре	Length	Unit	Description	Default Value	Unified Content Descriptor
specGroupID	bigint	8		Spectrum group identifier: unique identifier for each group of spectra that went into the analysis.	-99999999	
nodelD	tinyint	1		Node identifier: unique identifier, only within a given working group, for the node that contributed this analysis (nodeID = 1 for the recommended values from the combined analysis).	0	
nodeName	varchar	32		Name of working group node that contributed this analysis (nodeName = wg for the recommended values from the combined analysis).	'NONE'	
wg	varchar	4		GES working group which provided the data (one of: WG10, WG11, WG12, WG13).	'NONE'	
isWgParams	tinyint	1		Flag; 1 = working group recommend parameters, 0 = node analysis parameters	0	

- Our database defines a different set of default values to those found in the homogenised FITS files we receive
- This is to make the business of querying the archive with freeform SQL queries simpler as defaults can be easily excluded in typical range queries

bigint	-99999999	float/real	-9.999995e+08
int	-99999999	datetime	9999-12-31
smallint	-9999	varchar(<4)	
tinyint	0	varchar(>3)	NONE

• Most table include a row that consists only of default values to aid queries that join tables on keys that may contain default values

- Access to the data in the database is through freeform SQL queries, which gives you a lot of control and power, but can appear daunting at first.
- The SQL Cookbook is designed to hand-hold users through their first queries of the archive as well as providing more advanced examples

	Home Overview Browser Access Login Examples GES
	Example Queries
GataESO	The freeform SQL gives you a flexible way of querying the archive. You can query any table or combination of tables and have control over the columns returned.
GES Home Start Here	The following documentation is available to assist querying the archive. However, the GES data model (that is, the tables and views comprising the database and the columns that they contain) has changed significantly between releases. Thus, the details of querying the database also vary between releases. Below different sets of examples are given for the different releases and you should choose the ones appropriate to the release that you are
Data Overview Known Issues	using (which will usually be the most recent). Release iDR2iDR3 (February 2015; <i>most recent</i>)
the Surveys	a few simple examples o get started,
Schema browser	 some more extensive examples, which are also available as a PDF file for download (274 Kbyte), the Archive Workshop held during the GES 2014 Gaia-ESO Survey Second Science Meeting used a simplified version of the above examples. Both a PDE file of the slides for this workshop (1.5 Mbyte) and a crib-sheet of gueries (3.5 Kbyte) are available.
Data access Login	• a SQL cookbook with a general introduction to SQL. This document pertains to release iDR1 but is nonetheless useful as an introduction to SQL.
Ereeform SQL Example Queries	The startHere page gives additional details of the GES archive. The archive database structure (tables and columns etc), is documented in the schema
Q&A	browser. Release iDR2 (July 2014)
Glossary Release History	 a few simple examples to get started, some more extensive examples, which are also available as a PDF file for download (180 Kbyte),
Gallery	 the Archive Workshop held during the GES 2014 Gaia-ESO Survey Second Science Meeting used a simplified version of the above examples. Both a PDF file of the slides for this workshop (1.5 Mbyte) and a crib-sheet of gueries (3.5 Kbyte) are available.
Publications Monitor	• a SQL cookbook with a general introduction to SQL. This document pertains to release iDR1 but is nonetheless useful as an introduction to
Downtime	
Links	 a few simple examples to get started, some more extensive examples, which are also available as a PDF file for download (140 Kbyte),
NFAL	a SQL cookbook with a general introduction to SQL. Release iDR1Prelim (May 2013)
IFA ROE	Use the examples for the iDR1 release (above), but proceed with caution as some details are different.

Query Interface

Query Results

WFAU

GES Database - SQL Query Results

Data file generating queries can take a bit longer to execute as they write to a file ALL rows returned by the query.

A web link to your generated output file will appear at the bottom of this page.

Connecting to gesiDR2iDR3 database QUERY STARTED: Mon Nov 30 14:38:48 GMT 2015 [1 active, 5 total]

Please keep this browser window open and wait for your results or further information to appear below...

timeout: 3600

Connected to database

Submitted query: SELECT TEff, logG FROM RecommendedAstroAnalysis WHERE TEff > 0 AND logG > 0

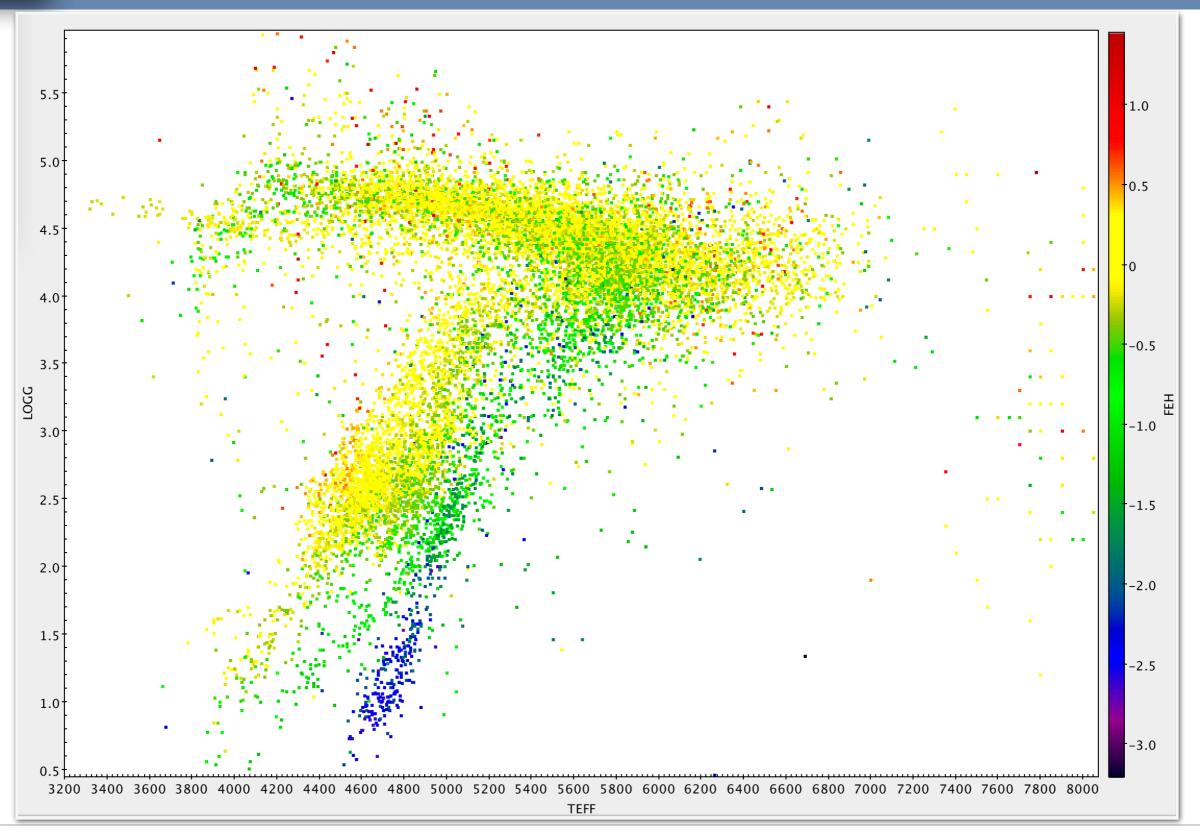
••• OK

	TEff	logG
1	+3997.025000	+4.497327
2	+5396.090000	+4.330000
3	+4930.430000	+4.670000
4	+5210.080000	+4.570000
5	+5692.690000	+4.470000
6	+5293.100000	+4.500000
7	+5615.380000	+4.490000
8	+5701.640000	+4.630000
29	+6867.000000	+4.320000
30	+5191.000000	+4.620000

(Query returned 15558 result rows, only the first 30 rows are shown in the displayed table.)

Please check the gesiDR2iDR3 entry in the release history for documentation pertaining to this release

<u>Download Results File</u>, your results in a gzipped FITS file (Contains **15558 rows**, 75.7 KB)
<u>Launch file in Topcat</u> (recurses Java 1.5 and Java Web Start, approx 12Mb download for Topcat application)


QUERY FINISHED: Mon Nov 30 14:38:56 GMT 2015

Click your browsers 'BACK' button to try another query...

TOPCAT
Plane Plot
🖬 🖉 🖉 💠 值 🚿 🔚 💽 🗙
04000 5000 6000 7000 TEFF

Adding FeH as 3rd dimension

WFAU

Downloading the Spectra

GES Database - SQL Query Results

Connecting to gesiDR2iDR3 database QUERY STARTED: Mon Nov 30 15:13:24 GMT 2015 [1 active, 9 total]

Please keep this browser window open and wait for your results or further information to appear below...

timeout: 3600

Connected to database

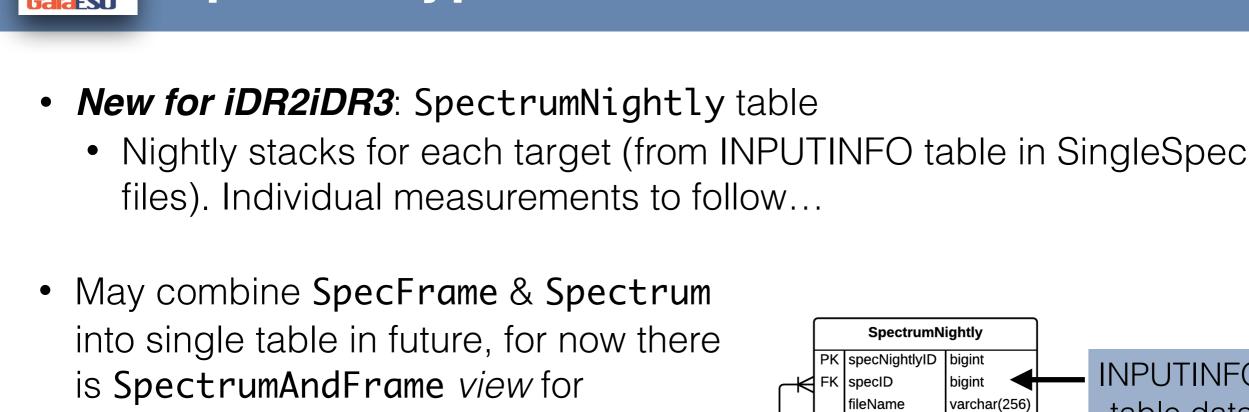
Submitted query: SELECT TOP 10 cName, TEff, logG, FeH, fileName FROM SpectrumGroup AS G, RecommendedAstroAnalysis AS A WHERE G.specGroupID=A.specGroupID AND fileName LIKE '%ges%'

• OK

The getFLink column can be used to download the referenced FITS file.

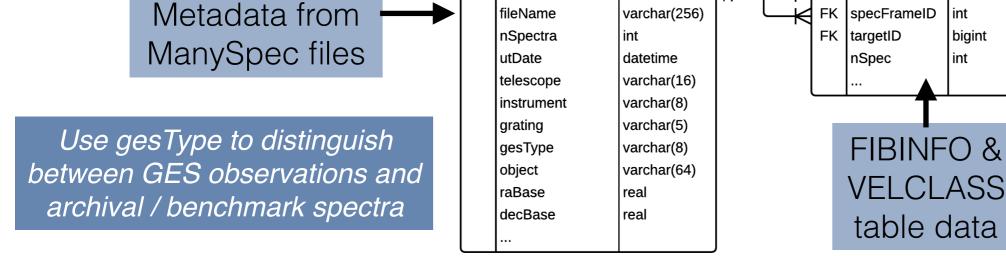
	getFLink	cName	TEff	logG	FeH	fileName
1 (download	19241116+0127147	+7069.343300	+4.279100	+0.128300	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19241116+0127147_H548.8.fit
2	<u>download</u>	19241116+0127147	+7069.343300	+4.279100	+0.128300	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19241116+0127147_H875.7.fit
3	<u>download</u>	19241441+0117488	+4518.941000	+3.374200	-0.158500	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19241441+0117488_H548.8.fit
4	<u>download</u>	19241441+0117488	+4518.941000	+3.374200	-0.158500	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19241441+0117488_H875.7.fit
5	<u>download</u>	19241663+0120436	+4573.762700	+2.932500	-0.297100	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19241663+0120436_H548.8.fit
6	<u>download</u>	19241663+0120436	+4573.762700	+2.932500	-0.297100	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19241663+0120436_H875.7.fit
7	<u>download</u>	19242022+0124433	+4566.779000	+2.741400	-0.237400	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19242022+0124433_H548.8.fit
8	<u>download</u>	19242022+0124433	+4566.779000	+2.741400	-0.237400	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19242022+0124433_H875.7.fit
9	<u>download</u>	19242607+0113438	+4559.623000	+2.939300	-0.443900	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19242607+0113438_H548.8.fit
10	<u>download</u>	19242607+0113438	+4559.623000	+2.939300	-0.443900	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/gir_19242607+0113438_H875.7.fit

(Query returned 10 result rows, all rows are shown in the displayed table.)


Please check the gesiDR2iDR3 entry in the release history for documentation pertaining to this release

QUERY FINISHED: Mon Nov 30 15:13:25 GMT 2015

Click your browsers 'BACK' button to try another query...


For downloading lots of spectra at once: see Workshop example

Queries that include a "fileName" column (from SpectrumGroup or SpecFrame) return links to download the spectrum files in the HTML table of results

Spectra Types

convenience.

SpecFrame

int

varchar(256)

PK specFrameID

fileName

INPUTINFO

table data

PK specGroupID

fileName

SingleSpec file link

PK specID

SpectrumGroup

bigint

bigint

varchar(256)

float

bigint

bigint

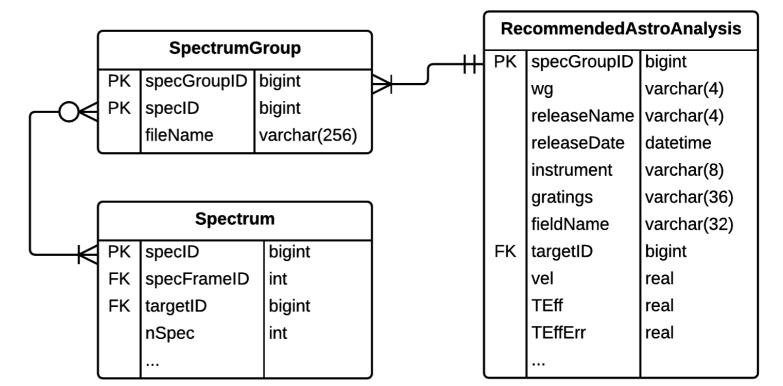
int

Spectrum

vel

specID

specFrameID


ΡK

FK

- The AstroAnalysis table hosts all the analyses of astrophysical parameters and abundances by the nodes and working groups.
- One analysis row can represent the combined analysis of several spectrum files for a given target
- Therefore it relates to **Spectrum** table via **SpectrumGroup** describing the group of spectra that form the analysis
- If the same set of spectra are analysed separately by different working groups or nodes then they will share a specGroupID

Analysis Tables

For convenience we have *views* of the AstroAnalysis table that just present particular slices of the complete data:

View name	WG	nodelD	isWgParams
RecommendedAstroAnalysis	15	1	
 just the WG15 results 			
WgRecommendedAstroAnalysis	10-14	1	
 WG10-14 recommended values 			
WpNaAstroAnalysis	*	> 1	1
 WG recommended parameters com 	bined with r	iode abundai	nces
NpNaAstroAnalysis	*	> 1	0
 individual node values 			
SpectrumOutlierAnalysis	14		
 just the WG14 flags 			
RecommendedOutlierAnalysis			
 just the WG14 flags for the WG15 red values from WG15) 	commendec	l results (toge	ether with flags

- Similarly the LineList table hosts all the atomic and molecular line data used in the astrophysical analysis of spectra and there are views to slice the data:
 - LineAtomNoHfs (ltype=3) atomic line, no hyperfine splitting
 - LineAtomHfs (ltype=2) atomic line with hyperfine splitting
 - LineMol (ltype=1) molecular lines
 - LineMolAtomHfs (ltype=1 or 2)
- Line lists are released on a separate timetable to the spectra and astrophysical analyses: current version is version 4
- Bibliographic references available via our Schema Browser

- GES Targets are cross-matched to sources in other surveys that are also archived by WFAU. All neighbouring sources within 10".
 - 2MASS Two-micron All Sky Survey
 - **SSA** Super Cosmos Science Archive (visible all sky digitised plate survey)
 - VHS VISTA Hemisphere Survey (infrared digital VIRCAM survey)
- Other surveys are available, without pre-calculated cross matches at present, but can be requested and may well appear in the iDR4 release:
 - all VISTA surveys: VVV, VMC, VIKING, VIDEO
 - UKIDSS (though northern hemisphere only, so less useful)
 - VST visible digital OmegaCAM surveys: ATLAS, VPHAS
 - Local copies of: Sloan SDSS, GLIMPSE etc. all available

Cross-matching example

GESv20150814

TABLE TargetXvhsSource

GES

- gesiDR4Spectra
- gesiDR4GiraffeSpectra
- gesiDR2iDR3
- Database Objects
- ⊡Tables
- ArchiveCurationHistory
- AstroAnalysis
- LineAtomHfs
- LineAtomNoHfs
- LineList
- LineMol
- LineMolAtomHfs
- NpNaAstroAnalysis
- RecommendedAstroAnalysis
- RecommendedOutlierAnalysis
- SpecFrame
- SpecFrameFitsKey
- Spectrum
- SpectrumAndFrame
- SpectrumGroup
- SpectrumNightly
- SpectrumOutlierAnalysis
- Target
- TargetXatlasSource
- TargetXSSASource
- TargetXtwomass_psc
- TargetXvhsSource

Cross-neighbours between the GES Target catalogue and the VISTA VHS.

All the sources in the VISTA VHS Source catalogue within 10 arcsec of each star in the GES Target catalogue are recorded in this cross-neighbour table. The Target table was joined to the VSA..vhsSource table to create these cross-neighbours. Use this table for any cross-querying of GES target stars with VISTA VHS sources.

Required constraints:

- Primary key is (masterObjID, slaveObjID)
- (masterObjID) references Target(targetID)
- (slaveObjID) references VSA..vhsSource(sourceID)

Name	Туре	Length	Unit	Description	Default Value	Unified Content Descriptor
masterObjID	bigint	8		The unique ID in Target (=targetID)		meta.id;meta.main
slaveObjID	bigint	8		The unique ID of the neighbour in VSAvhsSource (=sourceID)		meta.id;meta.dataset
distanceMins	real	4	arcminutes	Angular separation between neighbours		pos.angDistance
Total length		20				

Join Target with TargetXvhsSource on targetID:

SELECT GES.targetID, VHS.sourceID, VHS.jmksPnt
FROM Target AS GES, VHSDR1..vhsSource AS VHS, TargetXvhsSource
WHERE masterObjID=GES.targetID AND slaveObjID=VHS.sourceID
AND distanceMins<0.1</pre>

Cross-matching results

GES Database - SQL Query Results

Connecting to gesiDR2iDR3 database

QUERY STARTED: Tue Dec 01 12:19:10 GMT 2015 [1 active, 69 total]

Please keep this browser window open and wait for your results or further information to appear below...

timeout: 3600

Connected to database

Submitted query: SELECT GES.targetID, VHS.sourceID, VHS.jmksPnt FROM Target AS GES, VHSDR1..vhsSource AS VHS, TargetXvhsSource WHER masterObjID=GES.targetID AND slaveObjID=VHS.sourceID AND distanceMins<0.1

• OK

	targetID	sourceID	jmksPnt
1	1	472499719655	-9.999995E008
2	1	472499734128	-9.999995E008
3	1	472499734146	-9.999995E008
4	1	472499734147	-9.999995E008
5	1	472499734148	-9.999995E008
6	213	472566793767	+0.294574
7	214	472566803062	-0.028970
8	214	472566803063	+0.791998
9	215	472566804508	-0.053621
10	216	472566799051	+0.353453

Can query on any combination of GES or VHS database parameters and retrieve all the results from all the surveys you are interested in (can even join more than 2 surveys at once). Not just the source catalogue can be queried but the whole archive: light-curves, proper motions etc.

- Database releases are persistent, so previous versions are always available: allows you to cite a database release in your publications and your future readers should also be able to retrieve the same results (you can even include your SQL queries to help them!)
- Presently available:
 - iDR1
 - iDR2
 - iDR2iDR3
- iDR4 is almost ready: just awaiting some final missing data
- iDR5 should be released as soon as WG15 results are available in 2016

Workshop

Live Demo and work through hands-on examples

Prerequisites:

- We need an internet connection
- GES Science Archive login credentials
- Web browser + ideally either TOPCAT or Java Web Start

Link to crib sheet:

http://ges.roe.ac.uk/docs/ges2015_workshop_cribsheet.txt

- First step: everyone log into http://ges.roe.ac.uk
- Then navigate to the Freeform SQL Query page
- Select the **gesiDR2iDR3** database release

Let's do some basic queries of the Target table to test everything is working and to find our feet with the web interface and SQL query language:

SELECT	COUNT(*) FR	OM Target		33887
SELECT	* FROM Targe	et	HIN	T: Check the Schema Browser
SELECT	TOP 10 * FR	OM Target		for column details
SELECT	TOP 10 cName	e, RA, Dec, bMag	FROM	Target
		e, RA, Dec, bMag AND bMag < 18.5	FROM	Target
WHERE b	Mag BETWEEN	e, RA, Dec, bMag 18.0 AND 18.5	FROM	Target
ORDER E	sr bmag	Default accendi	na ord	ler: DESC for descending order

Retrieving information on a particular target:

SELECT * FROM Target WHERE cName = '11053303-7700120'

SELECT * FROM Target WHERE cName IN ('11034945-7700101', '11044460-7706240')

SELECT * FROM Target WHERE ra BETWEEN 70 AND 80 AND dec BETWEEN -45 AND -30

SELECT * FROM Spectrum WHERE cName = '11053303-7700120'

How many spectra are there for a particular target?

SELECT cName, COUNT(cName) AS num_of_spectra
FROM Spectrum
WHERE cName IN ('11034945-7700101','11044460-7706240')
GROUP BY cName
ORDER BY cName → Two each: UVES U/L CCD pair

Workshop

Joining tables on their primary keys:

GES Browser

Home | Overview | Browser | Access | Examples | Links | Credits

GESv20150814

TABLE Spectrum

GES

- gesiDR4Spectra
- **ImagesiDR4GiraffeSpectra**
- gesiDR2iDR3 Database Objects
- ⊡Tables
- ArchiveCurationHistory
- AstroAnalysis
- LineAtomHfs
- LineAtomNoHfs
- LineList
- LineMol
- LineMolAtomHfs
- NpNaAstroAnalysis
- RecommendedAstroAnalysis
- RecommendedOutlierAnalysis
- SpecFrame
- SpecFrameFitsKey
- Spectrum
- SpectrumAndFrame
- SpectrumGroup
- SpectrumNightly
- SpectrumOutlierAnalysis
- Target
- TargetXatlasSource
- TargetXSSASource
- TargetXtwomass_psc TargetXvhsSource
- WgRecommendedAstroAnalysis WpNaAstroAnalysis

tails of individual spectra.
e Spectrum table lists details of individual spectra observed during
e survey. Note that a given target star may (and often will) be
served more than once during the survey, so a given targetID may have
veral entries in the table; furthermore, early data releases may well
ntain several pipeline processed versions of the same data for a given
get.

Required constraints:

- Primary key is (specID)
- (targetID) references Target(targetID)
- (specFrameID) references SpecFrame(specFrameID)

Name	Туре	Length	Unit	Description	Default Value
specID	bigint	8		Spectrum identifier: unique identifier for each spectrum (4 MSB are the specFrameID; 4 LSB are the nSpec)	-999999999
specFrameID	int	4		SpecFrame identifier of the SpecFrame from which the spectrum was extracted	-99999999
targetID	bigint	8		Target identifer of the star being observed	-99999999
nSpec	int	4		The number of the spectrum {catalogue TType keyword: velclass.Nspec+Fibinfo.Nspec,NoName4.NSPEC,NoName3.NSPEC}	-999999999
nSpecOld	int	4		The number of the spectrum before unused fibres were culled (equivalent to the number of the fibre) {catalogue TType keyword: velclass.Nspec_old+Fibinfo.Nspec_old,NoName3.NSPEC_OLD}	-99999999
cName	varchar	16		Object name formed from the coordinates of the object (can be used in place of object to give a unique name) {catalogue TType keyword: Fibinfo.Cname}	'NONE'

Joining Spectrum to SpecFrame to retrieve ManySpec fileName and download link:

```
SELECT cName, rv, instrument, grating, fileName
FROM Spectrum, SpecFrame
WHERE cName IN ('11034945-7700101','11044460-7706240')
AND Spectrum.specFrameID=SpecFrame.specFrameID
```

Joining RecommendedAstroAnalysis to SpectrumGroup (for SingleSpec fileName and download link) and Spectrum to obtain pipeline quantities:

```
SELECT TEff, A.FeH, S.FeH AS "FeH (Spectrum)", rv, snr, fileName
FROM RecommendedAstroAnalysis AS A, SpectrumGroup AS G,
    Spectrum AS S
WHERE A.specGroupId = G.specGroupId
    AND G.specId = S.specId
    AND A.cName = '11053303-7700120'
```


Downloading lots of spectrum files at once:

Example, all SingleSpec spectra with WG15 recommended analyses from a particular cluster (select the Data Format ASCII FILE option before submitting query - uncompressed if you don't have gzip):

SELECT dbo.fWgetCmd(fileName)
FROM RecommendedAstroAnalysis A, SpectrumGroup G
WHERE fieldName="NGC2264" AND A.specGroupID=G.specGroupID
AND fileName LIKE '%GES%'

Download Results File, your results in a gzipped CSV ASCII file (Contains **1694 rows**, 24.8 KB)

Assuming you have "wget" installed (and gzip: Macs automatically unpack the gz file) and bash or another suitable shell:

>gunzip results1_13_12_38_10.csv.gz
>bash results1_13_12_38_10.csv

Looking at the nightly spectra measurements:

SELECT cName, instrument, grating, CASE WHEN nDispElems<60000 THEN 'U' ELSE 'L' END AS "UVES CCD", spec.rv as "Target Average RV", sn.rv as "Nightly Average RV"

FROM Spectrum spec, SpectrumNightly sn, SpecFrame frame

WHERE spec.specID = sn.specID AND frame.specFrameID=spec.specFrameID AND spec.rv > -1000 AND sn.rv > -1000

ORDER BY cName

example of using the CASE statement to produce conditional results

	cName	instrument	grating	UVES CCD	Target Average RV	Nightly Average RV	
1	00032138-4707227	UVES	580.0	U	+23.5473000	+23.2600000	
2	00032138-4707227	UVES	580.0	U	+23.5473000	+23.3234000	
3	00032138-4707227	UVES	580.0	U	+23.5473000	+23.2426000	
4	00032138-4707227	UVES	580.0	U	+23.5473000	+23.6605000	
5	00032138-4707227	UVES	580.0	U	+23.5473000	+23.5422000	
6	00032138-4707227	UVES	580.0	L	+23.5337000	+23.3762000	
7	00032138-4707227	UVES	580.0	L	+23.5337000	+23.5160000	
8	00032138-4707227	UVES	580.0	L	+23.5337000	+23.6210000	
9	00032138-4707227	UVES	580.0	L	+23.5337000	+23.5919000	
10	00035412-4708421	UVES	580.0	L	+148.5529000	+148.4174000	
11	00035412-4708421	UVES	580.0	L	+148.5529000	+148.5751000	

Workshop

Cross-linking GES with the VHS survey:

SELECT GES.targetID, VHS.sourceID, VHS.jmksPnt
FROM Target AS GES, VHSDR1..vhsSource AS VHS, TargetXvhsSource
WHERE masterObjID=GES.targetID AND slaveObjID=VHS.sourceID
AND distanceMins<0.1</pre>

Finding the nearest matching source using the MIN function in a subquery:

SELECT GES.targetID, VHS.sourceID, VHS.jmksPnt
FROM Target AS GES, VHSDR1..vhsSource AS VHS,
 TargetXvhsSource AS X
WHERE masterObjID=GES.targetID AND slaveObjID=VHS.sourceID
 AND distanceMins IN (SELECT MIN(distanceMins) FROM
 TargetXvhsSource WHERE masterObjID=X.masterObjID)

Finding all analyses of particular group of spectra:

All working group recommended:

SELECT cName, wg, TEff, peculi
 FROM AstroAnalysis
 WHERE nodeID=1 AND specGroupID=879

Including node results too:

SELECT cName, wg, nodeName, TEff, peculi
FROM AstroAnalysis
WHERE specGroupID=879

	cName	wg	nodeName	Teff	peculi
1	17463553+0531076	WG10	WG10	+3718.000000	
2	17463553+0531076	WG10	EPINARBO	+3727.000000	
3	17463553+0531076	WG10	OACT	+3709.000000	
4	17463553+0531076	WG12	WG12	+3717.975000	1011A 1013A
5	17463553+0531076	WG12	Arcetri	-9.999995E008	
6	17463553+0531076	WG12	CAUP	-9.999995E008	
7	17463553+0531076	WG12	OACT	+3709.000000	
8	17463553+0531076	WG12	OAPA	+3726.950000	1013A
9	17463553+0531076	WG14	WG14	-9.999995E008	1013A
10	17463553+0531076	WG15	WG15	+3717.975000	1011A 1013A 1013A

Workshop

Comparing analyses between multiple working groups with a self-join:

SELECT WG10.TEff AS 'WG10 TEff', WG12.TEff AS 'WG12.TEff', WG10.peculi AS 'WG10.peculi', WG12.peculi as 'WG12.peculi'

FROM WgRecommendedAstroAnalysis AS WG10, WgRecommendedAstroAnalysis AS WG12

WHERE WG10.wg='WG10' AND WG12.wg='WG12'
AND WG10.specGroupID=WG12.specGroupID
AND WG10.cName='17463553+0531076'

(Query returned 1 result row, all rows are shown in the displayed table.)

	WG10 TEff	WG12.TEff	WG10.peculi	WG12.peculi
1	+3718.000000	+3717.975000		1011A 1013A

Looking for peculiar objects' spectra using LIKE:

- SELECT DISTINCT(WG14.specID), WG15.specGroupID, WG15.cName, WG15.Teff, WG15.peculi AS 'wg15_peculi', WG14.peculi AS 'wg14_peculi', WG14.fileName
 - FROM RecommendedAstroAnalysis AS WG15, SpectrumOutlierAnalysis AS WG14, SpectrumGroup
- WHERE WG15.specGroupID=SpectrumGroup.specGroupID AND
 WG14.specID=SpectrumGroup.specID AND
 WG15.peculi LIKE '%2%c%' AND WG14.peculi LIKE '%2%a%' AND
 WG14.fileName LIKE '%ges%' AND WG15.TEff > 0

ORDER BY WG15.specGroupID

WG14 dictionary reference: http://ges.roe.ac.uk/docs/outliers-classes-18062013.pdf

Retrieving ManySpec file name for multiple analyses:

- SELECT A.specGroupID, A.cName, TEff, peculi, G.specID, ManySpec.fileName FROM RecommendedAstroAnalysis A, SpectrumGroup G, Spectrum S, SpecFrame ManySpec
- WHERE A.specGroupID=G.specGroupID AND G.specID=S.specID AND
 - S.specFrameID=ManySpec.specFrameID AND
 - A.specGroupID BETWEEN 364 AND 373

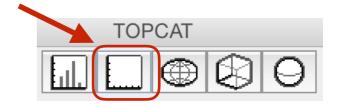
Analysis of 18035684-3002449 with unique ID 364 refers to spectra files that are not in the archive at present. The presence of a default row in each table means this query can still join all the tables and return results for every row, just providing defaults where entries are missing (this query is much more complex if we used null values)

(Query returned 4 result rows, all rows are shown in the displayed table.)

The getFLink column can be used to download the referenced FITS file.

	getFLink	specGroupID	cName	TEff	peculi	specID	fileName
1		364	18035684-3002449	+4585.111300		-999999999	NONE
2		364	18035684-3002449	+4585.111300		-999999999	NONE
3	download	372	19241116+0127147	+7069.343300		52073	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/C20130822_00010_fn.fit
4	download	372	19241116+0127147	+7069.343300		52297	/disk50/ges/ingest/fits/giraffe/stacked_v3.03/GES_CRT_192445_012455/C20130915_00013_fn.fit

TOPCAT Plotting (HR Diagram example):


```
SELECT TEff, logG, FeH, fieldName
FROM RecommendedAstroAnalysis
WHERE TEff > 0 AND logG > 0 AND FeH > -10
```

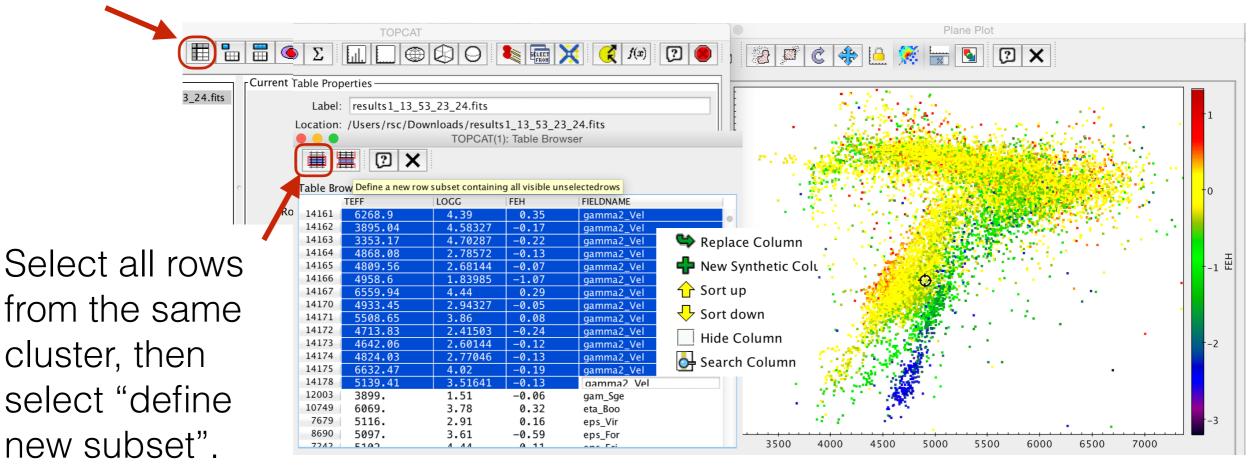
Select the Data Format FITS FILE option before submitting query, then on the results page just select "Launch file in Topcat" [if you have "Java Web Start" try it - it may work!], else, if you have a manual TOPCAT install, select "Download Results File" and open that file in TOPCAT:

Download Results File, your results in a gzipped FITS file (Contains 14355 rows, 134.7 KB)

Launch file in Topcat (requires Java 1.5 and Java Web Start, approx 12Mb download for Topcat application)

Select "Plane Plot" in TOPCAT and Shift-Click to drag a selection to reduce plot range

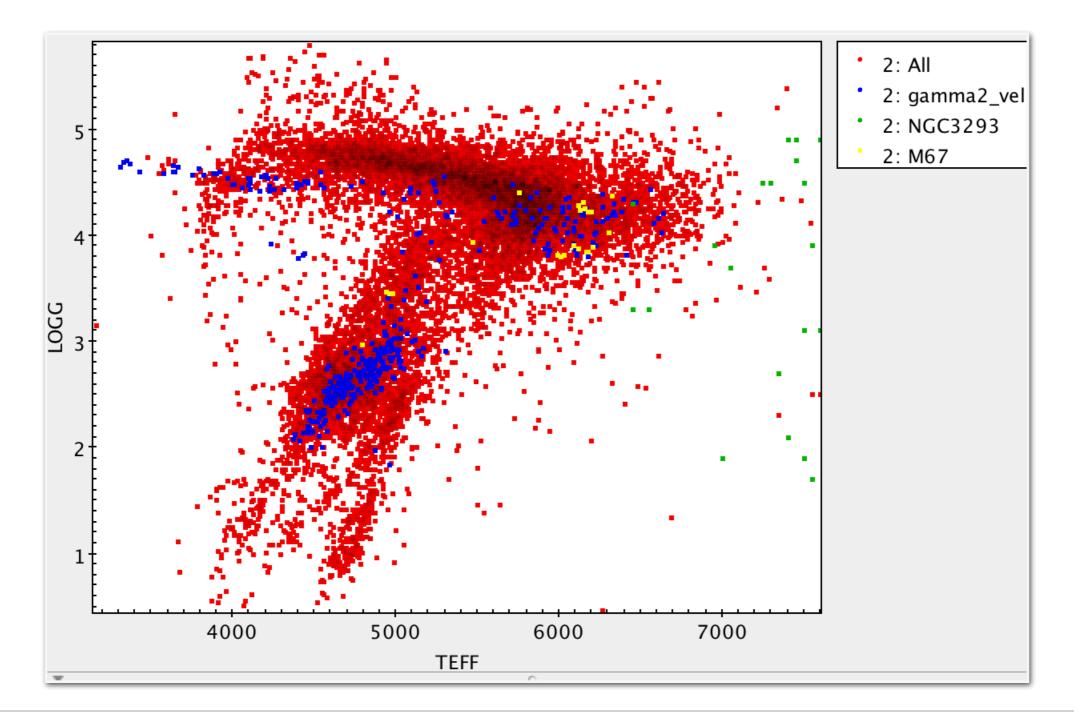
Workshop



TOPCAT Plotting (HR Diagram example):

Including FeH as a colour gradient on the HR diagram:

Select Table Browser, Right-Click FILENAME column to sort it.



TOPCAT Plotting (HR Diagram example):

Workshop

Support e-mail address, please send any queries here:

ges-support@roe.ac.uk

Links:

- Archive Website:
 - http://ges.roe.ac.uk
- Crib sheet:
 - http://ges.roe.ac.uk/docs/ges2015_workshop_cribsheet.txt
- This presentation:
 - http://ges.roe.ac.uk/docs/GES2015.pdf